Langmuir, Vol.32, No.26, 6739-6745, 2016
In Situ Visualization of Lipid Raft Domains by Fluorescent Glycol Chitosan Derivatives
Lipid rafts are highly ordered small microdomains mainly composed of glycosphingolipids, cholesterol, and protein receptors. Optically distinguishing lipid raft domains in cell membranes would greatly facilitate the investigations on the structure and dynamics of raft-related cellular behaviors, such as signal transduction, membrane transport (endocytosis), adhesion, and motility. However, current strategies about the visualization of lipid raft domains usually suffer from the low biocompatibility of the probes, invasive detection, or ex situ observation. At the same time, naturally derived biomacromolecules have been extensively used in biomedical field and their interaction with cells remains a long-standing topic since it is closely related to various fundamental studies and potential applications. Herein, noninvasive visualization of lipid raft domains in model lipid bilayers (supported lipid bilayers and giant unilamellar vesicles) and live cells was successfully realized in situ using fluorescent biomacromolecules: the fluorescein isothiocyanate (FITC)-labeled glycol chitosan molecules. We found that the lipid raft domains in model or real membranes could be specifically stained by the FITC-labeled glycol chitosan molecules, which could be attributed to the electrostatic attractive interaction and/or hydrophobic interaction between the probes and the lipid raft domains. Since the FITC-labeled glycol chitosan molecules do not need to completely insert into the lipid bilayer and will not disturb. the organization of lipids, they can more accurately visualize the raft domains as compared with other fluorescent dyes that need to be premixed with the various lipid molecules prior to the fabrication of model membranes. Furthermore, the FITC-labeled glycol chitosan molecules were found to be able to resist cellular internalization and could successfully visualize rafts in live cells. The present work provides a new way to achieve the imaging of lipid rafts and also sheds new light on the interaction between biomacromolecules and lipid membranes.