화학공학소재연구정보센터
Polymer(Korea), Vol.22, No.6, 972-978, November, 1998
산화억제제 첨가에 의한 탄소/탄소 복합재료의 물성에 관한 연구 : 1.흑연화도 및 기계적 특성
Influence of Oxidation Inhibitor on Carbon-Carbon Composites: 1. Degree of Graphitization and Mechanical Behavior
초록
탄화 매트릭스의 전구체로 사용된 페놀수지에 세라믹 분말인 이규화 몰리브덴(MoSi2)을 0, 4, 12, 20%의 중량비로 각각 고르게 분산시켜, 여기에 PAN계 탄소섬유를 함침하여 프리프레그법으로 일방향 탄소섬유/페놀수지 복합재료를 제조하였으며, 이를 다시 단일 공정으로 탄화(1100℃) 및 흑연화(2300℃)시켜서 일방향 탄소/탄소 복합재료를 제조하였다. 본 연구에서 산화억제성 및 고온에서 취성-연성 전이 특성을 지닌 MoSi2를 복합재료에 첨가하여 층간 공간, 굴곡 강도, 층간 전단 강도를 통한 물성을 측정하였다. 흑연화된 복합재료의 굴곡 강도는 MoSi2의 첨가량이 0wt%일 때 약 200MPa에서 12~20wt%일 때 360MPa로 아주 우수한 증가를 보였다. 굴곡 강도의 증가는 탄화, 흑연화 시의 이규화 몰리브덴에 의한 복합재료 밀도의 증가와 기공도의 감소에 기인하며, 또한 흑연화된 복합재료의 층간 공간(d002)의 감소로 인해서 확인할 수 있었다.
PAN-based carbon fibers impregnated with phenolic resins used as a precursor of carbonized matrix were modified by addition of molybdenum disilicide(MoSi2) in different concentrations. i.e., 0, 4 12 and 20% by weight. And, unidirectional carbon fiber-reinforced phenolic matrix composites were manufactured by prepreg method, and were submitted to carbonization(heat treated to 1100 ℃) and graphitization(to 2300 ℃), throughout one step manufacturing process. In this work, the influence of MoSi2 concentrations having the physical properties of oxidation inhibition and brittle-to-ductile transition (BDT) at higher temperatures was investigated in interlayer spacing (d002), flexural strength(σf), and interlaminar shear strength (ILSS) of the composites. As a result, the additions of 12 ~ 20 wt% MoSi2 to the composites received after graphitization showed that the flexural strength of the composites was improved in a result from about 200 MPa to 360 MPa. This is due to the increase of bulk density or decrease of open porosity and decrease of d002 of the graphitized composites.
  1. Thomas CR, "Essentials of Carbon-Carbon Composites," The Royal Society of Chemistry, Cambridge (1993)
  2. Donnet JB, Bansal RC, "Carbon Fibers," 2ed., Marcel Dekker, New York (1990)
  3. Buckley JD, Edie DD, "Carbon-Carbon Materials and Composites," Noyes Publications, New Jersey (1993)
  4. Knop A, Pilato LA, "Phenolic Resins," Springer-Verlag, Berlin (1986)
  5. Strong AB, "Fundamentals of Composites Manufacturing: Materials, Methods, and Applications," Chap. 9, Society of Manufacturing Engineers, Dearborn (1989)
  6. Rellick GS, Ext. Abst. 23rd Biennial Conf. on Carbon, Pennsylvania State Univ., 458 (1997)
  7. Kowbel W, Chellapa V, Withers JC, Carbon, 34, 819 (1996) 
  8. Jandhyala S, J. Am. Ceram. Soc., 76, 226 (1993) 
  9. Houska CR, Warren BE, J. Appl. Phys., 25, 1503 (1954) 
  10. Zhang BR, Marino F, J. Am. Ceram. Soc., 80, 269 (1996)
  11. Dhakate SR, Mathur RB, Bahl OP, Carbon, 35, 1753 (1997) 
  12. Flanagan M, "Polymer Characterization," Blackie, Glasgow (1993)
  13. Hayashi K, Yoneyama M, Okamoto Y, J. Ceram. Soc. Jpn., 104, 527 (1996)
  14. Conner CL, Faber KT, J. Mater. Sci., 25, 2737 (1990) 
  15. Park SJ, Lee JR, J. Mater. Sci., 33(3), 647 (1998) 
  16. Ikawa H, "Thermophysical Properties Handbook," Jpn. Soc. Thermophysical Properties ed., Youken-do (1990)