- Previous Article
- Next Article
- Table of Contents
Applied Chemistry for Engineering, Vol.27, No.4, 343-352, August, 2016
중질유 혹은 감압잔사유의 개질 반응 : Aquathermolysis와 Demetallization
Upgrading of Heavy Oil or Vacuum Residual Oil : Aquathermolysis and Demetallization
E-mail:
초록
지구상에는 1조 6880억 배럴의 원유매장량으로 현재 추세로 채굴하면 향후 53.3년 채굴 가능할 것으로 예측되고 있다. OPEC은 원유값이 10년 내에는 $100이 넘지 않을 것으로 예상하지만, 감산 정책의 정치적 이슈가 등장하면 원유값은 급격히 상승할 수도 있다. 따라서 일반 원유의 고갈에 대비해 비재래형 원유자원인 오일샌드나 비튜맨과 같은 중질유에 대한 관심이 높아지고 있다. 중질유는 일반적으로 레진이나 아스팔텐이라 부르는 탄소수가 60이 넘는 분자량이 높은 화합물 함량이 높아 점도가 높고 끓는점이 높다. 일반 원유를 감압 증류할 때 부생되는 감압잔사유(vacuum residue)는 물리화학적 물성들이 중질유와 비슷하다. 중질유의 채굴을 위해서는 점도를 낮추는 기술이 중요한데 본 리뷰논문은 상업적으로 사용되고 있는 aquathermolysis 기술을 검토하여 보았고 감압잔사유에 적용하여 보았다. 감압잔사유에는 니켈(Ni)과 바나듐(V)과 같은 전이금속이 함유되어 있는데, 이를 고도화하기 위해서는 전이금속 제거가 선행되어야 한다. 본 리뷰 논문에서는 감압잔사유로부터의 전이금속 제거 기술에 대한 최근 연구결과를 정리하여 보았다.
It has been estimated that the Earth has nearly 1.688 trillion barrels of crude oil, which will last 53.3 years at current extraction rates. The organization of petroleum exporting countries (OPEC) group forecasted that the oil prices will not jump to triple-digit territory within a decade, but it can quickly increase as the political issue for reducing oil production appears. With the potential of serious shortage of conventional hydrocarbon resources, the heavy oil, one of unconventional hydrocarbon resources including oil sand and natural bitumen has attracted worldwide interest. The heavy oil contains heavy hydrocarbon compounds, commonly called as resins and asphaltenes, with long carbon chains more than sixty carbon atoms. The high content of heavier fraction corresponds with the high molecular weight, viscosity, and boiling point. Physicochemical properties of residues from vacuum distillation of conventional oil, referred to as vacuum residues (VR) were similar to those of heavy oil. For the development of heavy oil reserves, reducing the heavy oil viscosity is the most important. In this article, commercially employed aquathermolysis processes and their application to VR upgrading are discussed. VR contains transition metals such as Ni and V, but these metals should be eliminated in advance for further refining. Recent studies on demetallization technologies for VR are also reviewed.
- Ban J, Arellano JL, Aguilera RF, Tallet M, OPEC 2015
- US Ministry of Defense, Global Strategic Trends - Out to 2045, Fifth Edition (2014).
- Meyer RF, Attanasi ED, Freeman PA, Heavy Oil and Natural Bitumen Resources in Geological Basins of the World, US Department of Interior & US Geological Survey Open File-Report 2007-1084 (2007).
- British Petroleum, BP Statistical Review of World Energy, June (2015).
- Hughes L, Rudolph J, Curr. Opin. Environ. Sustain., 3, 335 (2011)
- Muraza O, Galadima A, Fuel, 157, 219 (2015)
- Madureira NL, Key Concepts in Energy, pp. 125-126, Springer International Publishing (2014).
- Sorrell S, Miller R, Bentley R, Speirs J, Energy Policy, 38(9), 4990 (2010)
- Lam V, Li GC, Song CJ, Chen JW, Fairbridge C, Hui R, Zhang JJ, Fuel Process. Technol., 98, 30 (2012)
- World Energy Council, 2010 Survey of Energy Resources, 123-150 (2010).
- Bera A, Babadagli T, Appl. Energy, 151, 206 (2015)
- Muraza O, J. Anal. Appl. Pyrolysis, 114, 1 (2015)
- Hao HR, Su HJ, Chen G, Zhao JR, Hong L, The Open Fuels Energy Sci. J., 8, 93 (2015)
- Kapadia PR, Kallos MS, Gates ID, Fuel Process. Technol., 131, 270 (2015)
- Khalil M, Lee RL, Liu N, Fuel, 145, 214 (2015)
- Kim HC, Jeong WJ, Lee WC, Park SK, Asian J. Chem., 27, 4288 (2015)
- Lin L, Zeng F, Gu Y, J. Pet. Sci. Eng., 118, 27 (2014)
- Hashemi-Kiasari H, Hemmati-Sarapardeh A, Mighani S, Mohammadi AH, Sedaee-Sola B, Fuel, 122, 82 (2014)
- Shokrlu YH, Maham Y, Tan X, Babadagli T, Gray M, Fuel, 105, 397 (2013)
- Mosavat N, Torabi F, Fuel, 123, 274 (2014)
- Zhao DW, Wang J, Gates ID, Fuel, 112, 50 (2013)
- Ahmadun FR, Pendashteh A, Abdullah LC, Biak DRA, Madaeni SS, Abidin ZZ, J. Hazard. Mater., 170(2-3), 530 (2009)
- Peng J, Tang GQ, Kovscek AR, J. Pet. Sci. Eng., 66, 47 (2009)
- Wong RCK, Maini BB, J. Pet. Sci. Eng., 55, 259 (2007)
- Wang J, Yuan YZ, Zhang L, Wang R, J. Pet. Sci. Eng., 66, 69 (2009)
- Yuan D, Hou J, Song Z, Wang Y, Luo M, Zheng Z, J. Pet. Sci. Eng., 129, 15 (2015)
- Hyne JB, Greidanus JW, Tyrer JD, et al., In: 2nd Int. Conf. “The Future of Heavy Crude and Tar Sands.” Caracas, Venezuela, 7-17 February 1982, pp. 404-411, McGraw Hill, New York (1984).
- Shokrlu YH, Babadagli T, J. Pet. Sci. Eng., 119, 210 (2014)
- Ali MF, Abbas S, Fuel Process. Technol., 87(7), 573 (2006)
- Reynolds JG, Prepr. Pap. -Am. Chem. Soc., Div. Fuel Chem., 49, 79 (2004)
- Iskandar F, Dwinanto E, Abdullah M, Khairurrijal, Muraza O, KONA Powder Part. J., 33, 3 (2016)
- Zhao F, Wang X, Wang Y, Shi Y, J. Chem. Pharm. Res., 6(5), 2037 (2014)
- Maity SK, Ancheyta J, Marroquin G, Energy Fuels, 24, 2809 (2010)
- Wang Y, Chen Y, He J, Li P, Yang C, Energy Fuels, 24, 1502 (2010)
- Wu C, Lei GL, Yao CJ, Sun KJ, Gai PY, Cao YB, J. Fuel Chem. Technol., 38, 684 (2010)
- Xu HX, Pu CS, J. Fuel. Chem. Technol., 39, 606 (2011)
- Wang H, Wu Y, He L, Liu Z, Fuel, 26, 6518 (2012)
- Jing P, Li Q, Han M, Sun D, Jia L, Fang W, Shiyou Huagong / Petrochem. Technol., 36, 237 (2007)
- Freeman DH, O’Haner TC, Energy Fuels, 4, 688 (1990)
- Ovalles C, Unda PR, Bruzual J, Salazar A, Am. Chem. Soc. Div. Fuel. Chem., 48, 59 (2003)
- Petrukhina NN, Kayukova GP, Romanov GV, Tumanyan BP, Foss LE, Kosachev IP, Musin RZ, Ramazanova AI, Vakhin AV, Chem. Tech. Fuels Oils, 50(4), 315 (2014)
- Tumanyan BP, Romanov GV, Nurgaliev DK, Kayukova GP, Petrukhina NN, Chem. Tech. Fuels Oils, 50(3), 185 (2014)
- Bahram M, Kobra P, Chem. Res. Chin. Univ., 28(5), 807 (2012)
- Olvera JNR, Gutierrez GJ, Serrano JAR, Ovando AM, Febles VG, Arceo LDB, Catal. Commun., 43, 131 (2014)
- Banares MA, Fierro JLG, Catal. Lett., 17, 205 (1993)
- Pereira JSF, Moraes DP, Antes FG, Diehl LO, Santos MFP, Guimaraes RCI, Fonseca TCO, Dressler VL, Flores EMM, Microchem J., 96, 4 (2010)
- Chen YL, Wang YQ, Lu JY, Wu CA, Fuel, 88(8), 1426 (2009)
- Chen Y, Yang C, Wang Y, J. Anal. Appl. Pyrolysis, 89, 159 (2010)
- Fan HF, Zhang Y, Lin YJ, Fuel, 83(14-15), 2035 (2004)
- Merissa S, Fitriani P, Iskandar F, Abdullah M, Khairurrijal, Preliminary study of natural zeolite as catalyst for decreasing the viscosity of heavy oil, Padjadjaran International Physics Symposium, PIPS-2013, 131-134 (2013).
- Junaid AS, Wang W, Street C, Rahman M, Gersbach M, Zhou S, McCaffrey W, Kuznicki SM, Int. J. Chem. Mol. Nucl. Mater. Metallur. Eng., 4, 609 (2010)
- Korkuna O, Leboda R, Zieba JS, Vrublevska T, Gunko VM, Ryczkowski J, Microporous Mesoporous Mater., 87, 243 (2006)
- Gould KA, Fuel, 59, 733 (1980)
- Ates A, Azimi G, Choi KH, Green WH, Timko MT, Appl. Catal. B: Environ., 147, 144 (2014)
- Sattarin M, Modarresi H, Talachi H, Teymori M, Pet. Coal, 48(3), 14 (2006)
- Magomedov RN, Popova AZ, Maryutina TA, Kadiev KM, Khadzhiev SN, Pet. Chem., 55, 267 (2015)
- Jo H, Moun SG, Jo YM, Chung Y, Clean Technol., 16(1), 1 (2010)
- LEE AK, MURRAY AM, REYNOLDS JG, Fuel Sci. Technol. Int., 13(8), 1081 (1995)
- Treibs A, Ann. N. Y. Acad. Sci., 206, 97 (1973)
- Fukuyama H, Terai S, Uchida M, Cano JL, Ancheyta J, Catal. Today, 98(1-2), 207 (2004)
- Bruggemann P, Baitalow F, Seifert P, Meyer B, Schlichting H, Fuel Process. Technol., 91(2), 211 (2010)
- Soylak M, Karatepe AU, Elci L, Dogan M, Turk. J. Chem., 27(2), 235 (2003)
- Li L, Tang N, Wang Y, Cen W, Liu J, Zhou Y, Nano Scale Res. Letters, 10, 1 (2015)
- Wang SC, Xu XR, Yang JY, Gao JS, Fuel Process. Technol., 92(3), 486 (2011)
- Varma AJ, Deshpande SV, Kennedy JF, Carbohydr. Polym., 55, 77 (2004)
- Lukec I, Sertic-Bionda K, Lukec D, Fuel Process. Technol., 89(3), 292 (2008)
- Seo SB, Kajiuchi T, Kim DI, Lee SH, Kim HK, Macromol. Res., 10(2), 103 (2002)
- Luan JD, Li AM, Su T, Li X, J. Hazard. Mater., 166(2-3), 1109 (2009)
- Nassar NN, Husein MM, Pereira-Almao P, Fuel Process. Technol., 91(2), 169 (2010)
- Bakare HO, Esan AO, Olabemiwo OM, Chem. Mater. Res., 7, 1 (2015)
- Yamada Y, Matsumoto S, Kakiyama H, Honda H, Removal of heavy metal contained in petroleum heavy oil, Japanese Patent 54-110206 (1979).