화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.27, No.4, 407-414, August, 2016
미세기공 제올라이트를 이용한 국내 수종 굴참나무의 간접 촉매 열분해
Ex-situ Catalytic Pyrolysis of Korean Native Oak Tree over Microporous Zeolites
E-mail:
초록
고정층 반응기를 이용하여 제올라이트(HZSM-5, HBeta, HY) 상에서 국내 수종 굴참나무의 간접 촉매 열분해를 수행하였다. 고품질 바이오오일 생산 최적 조건을 도출하기 위해 시료와 촉매의 비율과 반응 온도의 영향 또한 고찰하였다. 세 종의 촉매 중에서 HZSM-5가 적절한 기공크기와 강한 산도로 인해 가장 높은 방향족 화합물 형성능을 나타내었다. HY와 HBeta 또한 촉매능을 가졌으나, 큰 기공크기로 인해 많은 양의 코크가 형성되었다. HZSM-5 상에서 참나무의 촉매 열분해를 통해 방향족 화합물의 수율을 극대화하기 위해서는 낮은 시료/촉매비와 높은 반응 온도가 요구됨을 확인하였다.
Ex-situ catalytic pyrolysis of a Korean native oak tree over microporous zeolites (HZSM-5, HBeta, and HY) was performed by using a fixed bed reactor. The effect of sample to catalyst ratio and reaction temperature was also investigated to optimize production conditions of high quality bio-oil. Among three catalysts, HZSM-5 showed the highest aromatic formation due to its proper pore size and strong acidity. Although HY and HBeta also showed the catalytic activity, they produced larger amounts of coke due to their larger pore size. The smaller ratio of the sample to the catalyst and higher reaction temperature were also required to maximize the yields of aromatic hydrocarbons via the catalytic pyrolysis of oak tree over HZSM-5.
  1. Jeon MJ, Jeon JK, Suh DJ, Park SH, Sa YJ, Joo SH, Park YK, Catal. Today, 204, 170 (2013)
  2. Park HJ, Jeon JK, Suh DJ, Suh YW, Heo HS, Park YK, Catal. Surv. Asia, 15, 161 (2011)
  3. Huber GW, Iborra S, Corma A, Chem. Rev., 106(9), 4044 (2006)
  4. Park SH, Cho HJ, Ryu C, Park YK, J. Ind. Eng. Chem., 36, 314 (2016)
  5. Ko CH, Park SH, Jeon JK, Suh DJ, Jeong KE, Park YK, Korean J. Chem. Eng., 29(12), 1657 (2012)
  6. Liu C, Wang H, Karim AM, Sun J, Wang Y, Chem. Soc. Rev., 43, 7594 (2014)
  7. Kim YM, Lee HW, Kim S, Watanabe C, Park YK, Bioenergy Res., 8, 431 (2015)
  8. Han TU, Kim YM, Watanabe C, Teramae N, Park YK, Kim S, Lee Y, J. Ind. Eng. Chem., 32, 345 (2015)
  9. Ngo TA, Kim J, Kim SS, J. Ind. Eng. Chem., 19(1), 137 (2013)
  10. Lee HW, Park SH, Jeon JK, Ryoo R, Kim W, Suh DJ, Park YK, Catal. Today, 232, 119 (2014)
  11. Heo HS, Kim SG, Jeong KE, Jeon JK, Park SH, Kim JM, Kim SS, Park YK, Bioresour. Technol., 102(4), 3952 (2011)
  12. Lee HW, Choi SJ, Park SH, Jeon JK, Jung SC, Joo SH, Park YK, Energy, 66, 2 (2014)
  13. Kim BS, Kim YM, Lee HW, Jae J, Kim DH, Jung SC, Watanabe C, Park YK, ACS Sustain. Chem. Eng., 4, 1354 (2016)
  14. Kim YM, Jae J, Lee HW, Han TU, Lee H, Park SH, Kim S, Watanabe C, Park YK, Energy Conv. Manag., Doi: 10.1016/j.enconman.2016.02.065.
  15. Kang HK, Lee IG, Lee KH, Kim BS, Jo TS, Chea KS, Park SH, Jung SC, Park YK, J. Nanomater., 2015, 251974 (2015)
  16. Jin SH, Lee HW, Ryu C, Jeon JK, Park YK, Energy, 81, 41 (2015)
  17. Park HJ, Heo HS, Jeon JK, Kim J, Ryoo R, Jeong KE, Park YK, Appl. Catal. B: Environ., 95(3-4), 365 (2010)
  18. Kim YM, Kim S, Han TU, Park YK, Watanabe C, J. Anal. Appl. Pyrolysis, 110, 435 (2014)
  19. Wang K, Kim KH, Brown RC, Green Chem., 16, 727 (2014)
  20. Kim BS, Kim YM, Jae J, Watanabe C, Kim S, Jung SC, Kim SC, Park YK, Bioresour. Technol., 194, 312 (2015)
  21. Jae J, Tompsett GA, Foster AJ, Hammond KD, Auerbach SM, Lobo RF, Huber GW, J. Catal., 279(2), 257 (2011)
  22. Kim BS, Jeong CS, Kim JM, Bin Park S, Park SH, Jeon JK, Jung SC, Kim SC, Park YK, Catal. Today, 265, 184 (2016)