Applied Chemistry for Engineering, Vol.27, No.4, 421-426, August, 2016
전기화학 증착법에 의해 합성된 폴리옥소메탈레이트/폴리피롤/탄소천 전극의 전기화학적 특성
Electrochemical Characteristics of Polyoxometalate/Polypyrrole/Carbon Cloth Electrode Synthesized by Electrochemical Deposition Method
E-mail:
초록
본 연구에서는 폴리옥소메탈레이트(polyoxometalate, POM)가 도핑된 폴리피롤(polypyrrole, Ppy)을 3차원 구조의 탄소천(carbon cloth, CC) 표면 위에 전기화학적 증착법을 이용하여 합성하고 이의 의사커패시터 특성을 순환전압전류법과 정전류 충전-방전법을 사용하여 분석하였다. POM-Ppy의 코팅은 전기화학적 증착 시간에 따라서 얇은 conformal형태의 코팅으로 조절되었다. 제조된 POM-Ppy/CC의 재료 특성은 전자주사현미경과 X-선 분광분석을 사용하여 분석하였다. POM-Ppy/CC의 3차원 나노복합체 구조는 높은 비정전용량(561 mF/cm2), 고속 충방전(85% 용량 유지율) 및 장수명 특성(97% 용량 유지율)을 나타내었다.
In this report, polyoxometalte (POM)-doped polypyrrole (Ppy) was deposited on surface of three-dimensional carbon cloth (CC) using an electrodeposition method and its pseudocapacitive behavior was investigated using cyclic voltammetry and galvanostatic charge-discharge. The POM-Ppy coating was thin and conformal which can be controlled by electrodeposition time. As-prepared POM-Ppy/CC was characterized using scanning electron microscope and energy-dispersive X-ray spectroscopy. The unique 3D nanocomposite structure of POM-Ppy/CC was capable of delivering excellent charge storage performances: a high areal capacitance (561 mF/cm2), a high rate capability (85%), and a good cycling performance (97% retention).
- Zhou C, Zhang Y, Li Y, Liu J, Nano Lett., 13, 2078 (2013)
- Liu T, Finn L, Yu M, Wang H, Zhai T, Lu X, Tong Y, Li Y, Nano Lett., 14, 2522 (2014)
- Yang L, Cheng S, Ding Y, Zhu X, Wnag ZL, Liu M, Nano Lett., 12, 321 (2012)
- Yang M, Hong SB, Choi BG, Phys. Chem. Chem. Phys., 17, 29874 (2015)
- Zhao X, Sanchez BM, Dobson PJ, Gran PS, Nanoscale, 3, 839 (2011)
- Zhang S, Pan N, Adv. Energy Mater., 5, 140140 (2015)
- Naoi K, Ishimoto S, Miyamoto JI, Naoi W, Energy Environ. Sci., 5, 9363 (2012)
- Hu CC, Chang KH, Lin MC, Wu YT, Nano Lett., 6, 2690 (2006)
- Madrigal MMP, Estrany F, Armelin E, Diaz DD, Aleman C, J. Mater. Chem. A, 4, 1792 (2016)
- Cherusseri J, Kar KK, RSC Adv., 6, 60454 (2016)
- Zhang K, Zhang LL, Zhao XS, Wu J, Chem. Mater., 22, 1392 (2010)
- Cho S, Shin KH, Jang J, ACS Appl. Mater. Interfaces, 5, 9186 (2013)
- Yun TG, Hwang BI, Kim D, Hyun S, Han SM, ACS Appl. Mater. Interfaces, 7, 9228 (2015)
- Bora C, Sharma J, Dolui S, J. Phys. Chem. C, 118, 29688 (2014)
- Biswas S, Drzal LT, Chem. Mater., 22, 5667 (2010)
- Fusalba F, Belanger D, J. Phys. Chem. B, 103(42), 9044 (1999)
- Liu DY, Reynolds JR, ACS Appl. Mater. Interfaces, 2, 3586 (2010)
- Chen S, Zhitomirsky I, J. Power Sources, 243, 865 (2013)
- Shi KY, Zhitomirsky I, J. Power Sources, 240, 42 (2013)
- Yang M, Choi BG, Jung SC, Han YK, Huh YS, Lee SB, Adv. Funct. Mater., 24(46), 7301 (2014)
- Yang M, Kim DS, Yoon JH, Hong SB, Jeong SW, Yoo DE, Lee TJ, Lee SJ, Lee KG, Choi BG, Analyst, 141, 1319 (2016)
- Hu J, Ji Y, Chen W, Streb C, Song YF, Energy Environ. Sci., 9, 1095 (2016)
- Cuentas-Gallegos AK, Lira-Cantu M, Casan-Pastor N, Gomez-Romero P, Adv. Funct. Mater., 15(7), 1125 (2005)
- Suppes GM, Deore BA, Freund MS, Langmuir, 24(3), 1064 (2008)
- Anwar N, Vagin M, Laffir F, Armstrong G, Dickinson C, McCormac T, Analyst, 137, 624 (2012)
- Cheng Q, Tang J, Ma J, Zhang H, Shinya N, Qin LC, J. Phys. Chem. C, 115, 23584 (2011)
- Wang H, Wang X, ACS Appl. Mater. Interfaces, 5, 6255 (2013)
- Bajwa G, Genovese M, Lian K, ECS J. Solid State Sci. Technol., 2, M3046 (2013)