화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.27, No.4, 421-426, August, 2016
전기화학 증착법에 의해 합성된 폴리옥소메탈레이트/폴리피롤/탄소천 전극의 전기화학적 특성
Electrochemical Characteristics of Polyoxometalate/Polypyrrole/Carbon Cloth Electrode Synthesized by Electrochemical Deposition Method
E-mail:
초록
본 연구에서는 폴리옥소메탈레이트(polyoxometalate, POM)가 도핑된 폴리피롤(polypyrrole, Ppy)을 3차원 구조의 탄소천(carbon cloth, CC) 표면 위에 전기화학적 증착법을 이용하여 합성하고 이의 의사커패시터 특성을 순환전압전류법과 정전류 충전-방전법을 사용하여 분석하였다. POM-Ppy의 코팅은 전기화학적 증착 시간에 따라서 얇은 conformal형태의 코팅으로 조절되었다. 제조된 POM-Ppy/CC의 재료 특성은 전자주사현미경과 X-선 분광분석을 사용하여 분석하였다. POM-Ppy/CC의 3차원 나노복합체 구조는 높은 비정전용량(561 mF/cm2), 고속 충방전(85% 용량 유지율) 및 장수명 특성(97% 용량 유지율)을 나타내었다.
In this report, polyoxometalte (POM)-doped polypyrrole (Ppy) was deposited on surface of three-dimensional carbon cloth (CC) using an electrodeposition method and its pseudocapacitive behavior was investigated using cyclic voltammetry and galvanostatic charge-discharge. The POM-Ppy coating was thin and conformal which can be controlled by electrodeposition time. As-prepared POM-Ppy/CC was characterized using scanning electron microscope and energy-dispersive X-ray spectroscopy. The unique 3D nanocomposite structure of POM-Ppy/CC was capable of delivering excellent charge storage performances: a high areal capacitance (561 mF/cm2), a high rate capability (85%), and a good cycling performance (97% retention).
  1. Zhou C, Zhang Y, Li Y, Liu J, Nano Lett., 13, 2078 (2013)
  2. Liu T, Finn L, Yu M, Wang H, Zhai T, Lu X, Tong Y, Li Y, Nano Lett., 14, 2522 (2014)
  3. Yang L, Cheng S, Ding Y, Zhu X, Wnag ZL, Liu M, Nano Lett., 12, 321 (2012)
  4. Yang M, Hong SB, Choi BG, Phys. Chem. Chem. Phys., 17, 29874 (2015)
  5. Zhao X, Sanchez BM, Dobson PJ, Gran PS, Nanoscale, 3, 839 (2011)
  6. Zhang S, Pan N, Adv. Energy Mater., 5, 140140 (2015)
  7. Naoi K, Ishimoto S, Miyamoto JI, Naoi W, Energy Environ. Sci., 5, 9363 (2012)
  8. Hu CC, Chang KH, Lin MC, Wu YT, Nano Lett., 6, 2690 (2006)
  9. Madrigal MMP, Estrany F, Armelin E, Diaz DD, Aleman C, J. Mater. Chem. A, 4, 1792 (2016)
  10. Cherusseri J, Kar KK, RSC Adv., 6, 60454 (2016)
  11. Zhang K, Zhang LL, Zhao XS, Wu J, Chem. Mater., 22, 1392 (2010)
  12. Cho S, Shin KH, Jang J, ACS Appl. Mater. Interfaces, 5, 9186 (2013)
  13. Yun TG, Hwang BI, Kim D, Hyun S, Han SM, ACS Appl. Mater. Interfaces, 7, 9228 (2015)
  14. Bora C, Sharma J, Dolui S, J. Phys. Chem. C, 118, 29688 (2014)
  15. Biswas S, Drzal LT, Chem. Mater., 22, 5667 (2010)
  16. Fusalba F, Belanger D, J. Phys. Chem. B, 103(42), 9044 (1999)
  17. Liu DY, Reynolds JR, ACS Appl. Mater. Interfaces, 2, 3586 (2010)
  18. Chen S, Zhitomirsky I, J. Power Sources, 243, 865 (2013)
  19. Shi KY, Zhitomirsky I, J. Power Sources, 240, 42 (2013)
  20. Yang M, Choi BG, Jung SC, Han YK, Huh YS, Lee SB, Adv. Funct. Mater., 24(46), 7301 (2014)
  21. Yang M, Kim DS, Yoon JH, Hong SB, Jeong SW, Yoo DE, Lee TJ, Lee SJ, Lee KG, Choi BG, Analyst, 141, 1319 (2016)
  22. Hu J, Ji Y, Chen W, Streb C, Song YF, Energy Environ. Sci., 9, 1095 (2016)
  23. Cuentas-Gallegos AK, Lira-Cantu M, Casan-Pastor N, Gomez-Romero P, Adv. Funct. Mater., 15(7), 1125 (2005)
  24. Suppes GM, Deore BA, Freund MS, Langmuir, 24(3), 1064 (2008)
  25. Anwar N, Vagin M, Laffir F, Armstrong G, Dickinson C, McCormac T, Analyst, 137, 624 (2012)
  26. Cheng Q, Tang J, Ma J, Zhang H, Shinya N, Qin LC, J. Phys. Chem. C, 115, 23584 (2011)
  27. Wang H, Wang X, ACS Appl. Mater. Interfaces, 5, 6255 (2013)
  28. Bajwa G, Genovese M, Lian K, ECS J. Solid State Sci. Technol., 2, M3046 (2013)