화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.27, No.4, 444-448, August, 2016
리튬이차전지용 Hollow Silicon/Carbon 음극소재의 전기화학적 성능
Electrochemical Performance of Hollow Silicon/Carbon Anode Materials for Lithium Ion Battery
E-mail:
초록
이차전지 음극소재인 실리콘의 부피팽창을 개선하기 위하여 hollow silicon/carbon (H-Si/C) 복합체의 특성을 조사하였다. Stober법을 통해 합성한 SiO2에 NaBH4를 첨가해 hollow 형태의 SiO2 (H-SiO2)를 제조한 후, 마그네슘 열 환원 반응과 phenolic 수지(resin)를 첨가한 후 탄화과정을 거쳐서 H-Si/C 복합체를 합성하였다. 제조된 H-Si/C 합성물은 XRD, SEM, BET, EDX, TGA를 통해 특성을 분석하였다. 음극소재의 용량과 사이클 안정성을 향상시키기 위해서, NaBH4 첨가량에 따라 합성된 H-Si/C 복합체의 전기화학적 특성을 충방전, 사이클, 순환전압전류, 임피던스 테스트를 통해 조사하였다. H-Si/C 음극활물질과 LiPF6 (EC : DMC : EMC = 1 : 1 : 1 vol%) 전해액을 사용하여 제조한 코인셀은 SiO2 : NaBH4 = 1 : 1일 때 1459 mAh/g의 향상된 용량을 나타내었으며, 사이클 성능 또한 두 번째 사이클 이후 40번째 사이클까지 매우 우수한 안정성을 나타냄을 확인하였다.
Hollow silicon/carbon (H-Si/C) composites as anode materials for lithium ion batteries were investigated to overcome the large volume expansion. H-Si/C composites were prepared as follows; hollow SiO2 (H-SiO2) was prepared by adding NaBH4 to SiO2 synthesized using stober method followed by magnesiothermic reduction and carbonization of phenolic resin. The H-Si/C composites were analyzed by XRD, SEM, BET and EDX. To improve the capacity and cycle performance, the electrochemical characteristics of H-Si/C composites synthesized with various NaBH4 contents were investigated by charge/discharge, cycle, cyclic voltammetry and impedance tests. The coin cell using H-Si/C composite (SiO2 : NaBH4 = 1 : 1 in weight) in the electrolyte of LiPF6 dissolved in organic solvents (EC : DMC : EMC = 1 : 1 : 1 vol%) has better capacity (1459 mAh/g) than those of other composition coin cells. It is found that the coin cell (SiO2 : NaBH4 = 1 : 1 in weight) has an excellent capacity retention from 2nd cycle to 40th cycle.
  1. Park JY, Jung MZ, Lee JD, Appl. Chem. Eng., 26, 118 (2015)
  2. Ko HS, Choi JE, Lee JD, Appl. Chem. Eng., 25(6), 592 (2014)
  3. Hwa Y, Kim WS, Yu BC, Kim JH, Hong SH, Sohn HJ, J. Power Sources, 252, 144 (2014)
  4. Sun Z, Song X, Zhang P, Gao L, RSC Adv., 4, 20814 (2014)
  5. Kim YM, Ahn J, Yu SH, Chung DY, Lee KJ, Lee JK, Sung YE, Electrochim. Acta, 151, 256 (2015)
  6. Hong I, Scrosati B, Croce F, Solid State Ion., 232, 24 (2013)
  7. Zhang T, Zhang Q, Ge J, Goebl J, Sun M, Yan Y, Liu Y, Chang C, Guo J, Yin Y, J. Phys. Chem. C, 113, 3168 (2009)
  8. Du Y, Hou M, Zhou D, Wang Y, Wang C, Xia Y, J. Energy Chem., 23, 315 (2014)
  9. Teng Z, Su X, Zheng Y, Sun J, Chen G, Tian C, Wang J, Li H, Zhao Y, Lu G, Chem. Mater., 25, 98 (2013)
  10. Li HH, Wang JW, Wu XL, Sun HZ, Yang FM, Wang K, Zhang LL, Fan CY, Zhang JP, RSC Adv., 4, 36218 (2014)
  11. Wang DS, Gao MX, Pan HG, Wang JH, Liu YF, J. Power Sources, 256, 190 (2014)
  12. Su MR, Wang ZX, Guo HJ, Li XH, Huang SL, Gan L, Adv. Powder Technol., 24(6), 921 (2013)
  13. Chen X, Huang Y, Chen J, Zhang X, Li C, Huang H, Ceram. Int., 41, 8533 (2015)
  14. Arantes TM, Pinto AH, Leite ER, Longo E, Camargo ER, Colloids Surf. A: Physicochem. Eng. Asp., 415, 209 (2012)
  15. Yang J, Wang YX, Chou SL, Zhang R, Xu Y, Fan J, Zhang W, Liu HK, Zhao D, Dou SZ, Nano Energy, 18, 133 (2015)
  16. Xie J, Wang GQ, Huo Y, Zhang SC, Cao GS, Zhao XB, Electrochim. Acta, 135, 94 (2014)