화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.41, 33-39, September, 2016
Influence of mesopore distribution on photocatalytic behaviors of anatase TiO2 spherical nanostructures
E-mail:
Mesoporous anatase TiO2 spheres were synthesized via sol.gel and solvothermal processes using ammonia. The crystallite size was shown to increase with the increasing amount of aqueous ammonia used, leading to a larger pore size. The mesopore volume of the materials reaches up to 0.308 cm3 g-1. The TiO2 spheres showed improved catalytic activity in organic dye photodegradation owing to their high specific surface area, pore volume, and optimal pore size, which enable an increase of light absorption capability, as well as fast mass transfer by the optimal mesopore structure.
  1. Zickermann V, Wirth C, Nasiri H, Siegmund K, Schwalbe H, Hunte C, Brandt U, Science, 347(6217), 44 (2015)
  2. Ducati C, Nature, 495(7440), 180 (2013)
  3. Chong MN, Jin B, Chow CWK, Saint C, Water Res., 44, 2997 (2010)
  4. Kanakaraju D, Kockler J, Motti CA, Glass BD, Oelgemoller M, Appl. Catal. B: Environ., 166-167, 45 (2015)
  5. Panthi G, Park M, Kim HY, Lee SY, Park SJ, J. Ind. Eng. Chem., 21, 26 (2015)
  6. Yang X, Qin J, Jiang Y, Chen K, Yan X, Zhang D, Li R, Tang H, Appl. Catal. B: Environ., 166-167, 231 (2015)
  7. Jing PP, Li JN, Pan LN, Wang JB, Sun XJ, Liu QF, J. Hazard. Mater., 284, 163 (2015)
  8. Ding B, Kim CK, Kim HY, Seo MK, Park SJ, Fiber Polym., 5, 105 (2004)
  9. Lee SY, Park SJ, J. Ind. Eng. Chem., 19(6), 1761 (2013)
  10. Zeng L, Lu Z, Yang J, Li M, Song W, Xie C, Appl. Catal. B: Environ., 166-167, 1 (2015)
  11. Im JS, Park SJ, Kim TJ, Kim YH, Lee YS, J. Colloid Interface Sci., 318, 42 (2008)
  12. Park SJ, Jin FL, Lee C, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 402, 335 (2005)
  13. Hossain MK, Akhtar US, Koirala AR, Hwang IC, Yoon KB, Catal. Today, 243, 225 (2015)
  14. Zhou JK, Lv L, Yu JQ, Li HL, Guo PZ, Sun H, Zhao XS, J. Phys. Chem., 112, 5316 (2008)
  15. Yu J, Yu X, Environ. Sci. Technol., 42, 4902 (2008)
  16. Kim S, Park SJ, Electrochim. Acta, 52(11), 3477 (2007)
  17. Yu J, Xiang Q, Rana J, Mann S, CrystEngComm, 12, 872 (2010)
  18. Shi W, Guo F, Chen J, Che G, Lin X, J. Alloy. Compd., 612, 143 (2014)
  19. Li K, Zhang HB, Tang YP, Ying DW, Xu YL, Wang YL, Jia JP, Appl. Catal. B: Environ., 164, 82 (2015)
  20. Wang HY, Chen J, Hy S, Yu L, Xu Z, Liu B, Nanoscale, 6, 14926 (2014)
  21. Epifani M, Dıaz R, Force C, Comini E, Manzanares M, Andreu T, Genc A, Arbiol J, Siciliano P, Faglia G, Morante JR, ACS Appl. Mater. Interface, 7, 6898 (2015)
  22. Zdravkov A, Kudryashova J, Kanaev A, Povolotskiy A, Volkova A, Golikova E, Khimich N, Mater. Chem. Phys., 160, 73 (2015)
  23. Nam CT, Yang WD, Duc LM, J. Nanomater., 2013, 11 (2013)
  24. Yang JX, Lukashuk L, Li H, Fottinger K, Rupprechter G, Schubert U, Catal. Lett., 144(3), 403 (2014)
  25. Chen DH, Cao L, Huang FZ, Imperia P, Cheng YB, Caruso RA, J. Am. Chem. Soc., 132(12), 4438 (2010)
  26. Khalil NM, Wahsh MMS, Saad EE, J. Ind. Eng. Chem., 21, 1214 (2015)
  27. Ding B, Kim H, Kim C, Khil M, Park SJ, Nanotechnology, 14, 532 (2003)
  28. Lee DS, Park SJ, Curr. Appl. Phys., 15(2), 144 (2015)
  29. Yanagisawa K, Ovenstone J, J. Phys. Chem. B, 103(37), 7781 (1999)
  30. Chen DH, Huang FZ, Cheng YB, Caruso RA, Adv. Mater., 21(21), 2206 (2009)
  31. Yu H, Yu J, Liu S, Mann S, Chem. Mater., 19, 4327 (2007)
  32. Yu JG, Guo HT, Davis SA, Mann S, Adv. Funct. Mater., 16(15), 2035 (2006)
  33. Lian J, Duan X, Ma J, Peng P, Kim T, Zheng W, ACS Nano, 3, 3749 (2009)
  34. Im JS, Park SJ, Lee YS, J. Colloid Interface Sci., 314(1), 32 (2007)
  35. He ZL, Zhu ZF, Li JQ, Zhou JQ, Wei N, J. Hazard. Mater., 190(1-3), 133 (2011)
  36. Liu B, Nakata K, Sakai M, Saito H, Ochiai T, Murakami T, Takagi K, Fujishima A, Catal. Sci. Technol., 2, 1933 (2012)
  37. Ma L, Huang Y, Hou M, Xie Z, Zhang Z, Sci. Rep. UK, 5, 15442 (2015)
  38. Li W, Zhang LB, Peng JH, Li N, Zhu XY, Ind. Crop. Prod., 27, 341 (2008)
  39. Jo EH, Chang H, Kim SK, Roh KM, Kim J, Jang HD, Mater. Lett., 131, 244 (2014)
  40. Morales AE, Mora ES, Pal U, Rev. Mex. Fis., 53, 18 (2007)
  41. Kim DS, Han SJ, Kwak SY, J. Colloid Interface Sci., 316(1), 85 (2007)
  42. Wang E, Zhang P, Chen Y, Liu Z, He T, Cao Y, J. Mater. Chem., 22, 14443 (2012)
  43. Gao BF, Ma Y, Cao Y, Yang WS, Yao JN, J. Phys. Chem. B, 110(29), 14391 (2006)
  44. Zhou X, Shi TJ, Wu J, Zhou HO, Appl. Surf. Sci., 287, 359 (2013)
  45. Chang YH, Liu CM, Chen C, Cheng HE, J. Electrochem. Soc., 159(7), D401 (2012)
  46. Liu B, Zhao X, Zhao Q, He X, Feng J, J. Electron. Spectrosc., 148, 158 (2005)
  47. Schneider J, Matsuoka M, Takeuchi M, Zhang JL, Horiuchi Y, Anpo M, Bahnemann DW, Chem. Rev., 114(19), 9919 (2014)
  48. Ibhadon AO, Fitzpatrick P, Catalysts, 3, 189 (2013)
  49. Lee DS, Lee SY, Rhee KY, Park SJ, Curr. Appl. Phys., 14(3), 415 (2014)
  50. Panthi G, Park M, Kim HY, Park SJ, Macromol. Res., 22(8), 895 (2014)
  51. Bai H, Liu Z, Lee SS, Sun DD, Appl. Catal. A: Gen., 447-448, 193 (2012)
  52. Stokke JM, Mazyck DW, Environ. Sci. Technol., 42, 3808 (2008)
  53. Rasalingam S, Wu CM, Koodali RT, ACS Appl. Mater. Interface, 7, 4368 (2015)
  54. Chidambaram S, Pari B, Kasi N, Muthusamy S, J. Alloy. Compd., 665, 404 (2016)
  55. Bakar SD, Byzynski G, Ribeiro C, J. Alloy. Compd., 666, 38 (2016)