화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.26, No.7, 393-399, July, 2016
수열합성법을 이용한 NiCrAl 합금 폼 위에 합성된 NiO 촉매 형상 제어
Morphology Control of NiO Catalysts on NiCrAl Alloy Foam Using a Hydrothermal Method
E-mail:
Flower-like nickel oxide (NiO) catalysts were coated on NiCrAl alloy foam using a hydrothermal method. The structural, morphological, and chemical bonding properties of the NiO catalysts coated on the NiCrAl alloy foam were investigated by field-emission scanning electron microscopy, scanning electron microscopy-energy dispersive spectroscopy, Xray diffraction, and X-ray photoelectron spectroscopy, respectively. To obtain flower-like morphology of NiO catalysts on the NiCrAl alloy foam, we prepared three different levels of pH of the hydrothermal solution: pH-7.0, pH-10.0, and pH-11.5. The NiO morphology of the pH-7.0 and pH-10.0 samples exhibited a large size plate owing to the slow reaction of the hydroxide (OH.) and nickel ions (Ni+) in lower pH than pH-11.5. Flower-like NiO catalysts (~4.7 μm-6.6 μm) were formed owing to the fast reaction of OH. and Ni2+ by increased OH. concentration at high pH. Thus, the flower-like morphology of NiO catalysts on NiCrAl alloy foam depends strongly on the pH of the hydrothermal solution.
  1. Das D, Veziroglu TN, Int. J. Hydrog. Energy, 26(1), 13 (2001)
  2. Ding Y, Alpay E, Chem. Eng. Sci., 55(18), 3929 (2000)
  3. Kodama T, Kiyama A, Shimizu KI, Energy Fuels, 17(1), 13 (2003)
  4. Breen JP, Burch R, Coleman HM, Appl. Catal. B: Environ., 39(1), 65 (2002)
  5. Lee YJ, An GH, Park MH, Lee CW, Choi SH, Jung JY, Jo SJ, Lee KJ, Ahn HJ, Korean J. Mater. Res., 24(8), 393 (2014)
  6. Ayabe S, Omoto H, Utaka T, Kikuchi R, Sasaki K, Teraoka Y, Eguchi K, Appl. Catal. A: Gen., 241(1-2), 261 (2003)
  7. Go KS, Son SR, Kim SD, Kang KS, Park CS, Int. J. Hydrog. Energy, 34(3), 1301 (2009)
  8. Dissanayake D, Rosynek MP, Kharas KCC, Lunsford JH, J. Catal., 132, 117 (1991)
  9. Lee YJ, Koo BR, Baek SH, Park MH, Ahn HJ, Korean J. Mater. Res., 25(8), 391 (2015)
  10. Laosiripojana N, Assabumrungrat S, Appl. Catal. A: Gen., 290(1-2), 200 (2005)
  11. Choe H, Dunand DC, Acta Mater., 52, 1283 (2004)
  12. Wu P, Li X, Ji S, Lang B, Habimana F, Li C, Catal. Today, 146, 82 (2009)
  13. Jia JS, Zhou J, Zhang CX, Yuan ZS, Wang SJ, Cao L, Wang SD, Appl. Catal. A: Gen., 341(1-2), 1 (2008)
  14. Tang YF, Liu YY, Yu SX, Zhao YF, Mu SC, Gao FM, Electrochim. Acta, 123, 158 (2014)
  15. Cui Y, Wang C, Wu S, Liu G, Zhang F, Wang T, Cryst. Eng. Comm., 13, 4930 (2011)
  16. Kim JW, Lee JH, Jang HC, Lee KA, J. Korean Powder Metall. Inst., 22, 408 (2015)
  17. Richardson JT, Scates R, Twigg MV, Appl. Catal. A: Gen., 246(1), 137 (2003)
  18. Kim KS, Davis RE, J. Electron Spectrosc. Relat. Phenom., 1, 251 (1972)
  19. Grosvenor AP, Biesinger MC, Smart RSC, Mcintyre NS, Surf. Sci., 600, 1771 (2006)
  20. Velon A, Yi DQ, Oxid. Met., 57, 13 (2002)
  21. Venezia AM, Loxton CM, Surf. Sci., 225, 195 (1990)