- Previous Article
- Next Article
- Table of Contents
Korean Journal of Materials Research, Vol.26, No.7, 393-399, July, 2016
수열합성법을 이용한 NiCrAl 합금 폼 위에 합성된 NiO 촉매 형상 제어
Morphology Control of NiO Catalysts on NiCrAl Alloy Foam Using a Hydrothermal Method
E-mail:
Flower-like nickel oxide (NiO) catalysts were coated on NiCrAl alloy foam using a hydrothermal method. The structural, morphological, and chemical bonding properties of the NiO catalysts coated on the NiCrAl alloy foam were investigated by field-emission scanning electron microscopy, scanning electron microscopy-energy dispersive spectroscopy, Xray diffraction, and X-ray photoelectron spectroscopy, respectively. To obtain flower-like morphology of NiO catalysts on the NiCrAl alloy foam, we prepared three different levels of pH of the hydrothermal solution: pH-7.0, pH-10.0, and pH-11.5. The NiO morphology of the pH-7.0 and pH-10.0 samples exhibited a large size plate owing to the slow reaction of the hydroxide (OH.) and nickel ions (Ni+) in lower pH than pH-11.5. Flower-like NiO catalysts (~4.7 μm-6.6 μm) were formed owing to the fast reaction of OH. and Ni2+ by increased OH. concentration at high pH. Thus, the flower-like morphology of NiO catalysts on NiCrAl alloy foam depends strongly on the pH of the hydrothermal solution.
Keywords:methanol electro-oxidation;porous carbon nanofibers;supports;platinum electrocatalysts;electrospinning
- Das D, Veziroglu TN, Int. J. Hydrog. Energy, 26(1), 13 (2001)
- Ding Y, Alpay E, Chem. Eng. Sci., 55(18), 3929 (2000)
- Kodama T, Kiyama A, Shimizu KI, Energy Fuels, 17(1), 13 (2003)
- Breen JP, Burch R, Coleman HM, Appl. Catal. B: Environ., 39(1), 65 (2002)
- Lee YJ, An GH, Park MH, Lee CW, Choi SH, Jung JY, Jo SJ, Lee KJ, Ahn HJ, Korean J. Mater. Res., 24(8), 393 (2014)
- Ayabe S, Omoto H, Utaka T, Kikuchi R, Sasaki K, Teraoka Y, Eguchi K, Appl. Catal. A: Gen., 241(1-2), 261 (2003)
- Go KS, Son SR, Kim SD, Kang KS, Park CS, Int. J. Hydrog. Energy, 34(3), 1301 (2009)
- Dissanayake D, Rosynek MP, Kharas KCC, Lunsford JH, J. Catal., 132, 117 (1991)
- Lee YJ, Koo BR, Baek SH, Park MH, Ahn HJ, Korean J. Mater. Res., 25(8), 391 (2015)
- Laosiripojana N, Assabumrungrat S, Appl. Catal. A: Gen., 290(1-2), 200 (2005)
- Choe H, Dunand DC, Acta Mater., 52, 1283 (2004)
- Wu P, Li X, Ji S, Lang B, Habimana F, Li C, Catal. Today, 146, 82 (2009)
- Jia JS, Zhou J, Zhang CX, Yuan ZS, Wang SJ, Cao L, Wang SD, Appl. Catal. A: Gen., 341(1-2), 1 (2008)
- Tang YF, Liu YY, Yu SX, Zhao YF, Mu SC, Gao FM, Electrochim. Acta, 123, 158 (2014)
- Cui Y, Wang C, Wu S, Liu G, Zhang F, Wang T, Cryst. Eng. Comm., 13, 4930 (2011)
- Kim JW, Lee JH, Jang HC, Lee KA, J. Korean Powder Metall. Inst., 22, 408 (2015)
- Richardson JT, Scates R, Twigg MV, Appl. Catal. A: Gen., 246(1), 137 (2003)
- Kim KS, Davis RE, J. Electron Spectrosc. Relat. Phenom., 1, 251 (1972)
- Grosvenor AP, Biesinger MC, Smart RSC, Mcintyre NS, Surf. Sci., 600, 1771 (2006)
- Velon A, Yi DQ, Oxid. Met., 57, 13 (2002)
- Venezia AM, Loxton CM, Surf. Sci., 225, 195 (1990)