화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.9, No.3, 295-300, March, 1999
Vapor Transport법에 의한 GaN 결정의 성장과 특성
Growth and Properties of GaN Crystals by Vapor Transport Method
초록
액상의 Ga으로부터 공급되는 기체상태의 Ga과 NH3를 1050~1150℃의 온도벙위에서 직정 반응시켜 사파이어 기판 위에 직경이 5-27μm이고m 높이가 2~27μm 인 육각기둥 형태의 GaN 결정을 성장하였다. GaN 결정의 성장 초기에는 c- 축 방향으로 우선 성장된 후 성장시간과 성장온도 빛 NH3의 유량이 증가함에 따라 기체상태의 Ga공급이 제한됨으로써 성장률이 둔화됨과 동시에 a- 축 방향으로 우선 성장되었다. GaN 결정의 크기가 증가함에 따라 결정의 품질이 개선되어 x- 선 회절강도와 중성도너에 구속된 엑시톤 관련 발광밴드 (Iu) 의 강도가 증가하고, Iu 발광밴드의 반치폭이 감소하였다.
Hexagonal-columnar-shaped GaN microcrystals with a dimension of 5-27μm in diameter and 2~27μm in height were grown on sapphire substrate by the direct reaction of NH, and Ga vapor from liquid Ga source at the temperature range of 1050~1150℃. At the initial stage of GaN growth process, the GaN crystals were grown preferably along c-axis direction, but further increase in growth conditions, i. e.; growth temperature, growth time, and HN3 gas flows, resulted in the drop of growth rate aJild prefer to grow along a-axis direction. With increase of the GaN crystallite size, both intensity of XRD and neutra, l-donor bound exciton-related emission band (lu) were increased, and the fact that full width at half maximum was decreased means that the quality of GaN crystals were improved.
  1. Thurmond CD, Logan RA, J. Electrochem. Soc., 119, 622 (1972)
  2. Madar R, Jacob G, Hallais J, Fruchart R, J. Cryst. Growth, 31, 197 (1975)
  3. Porowski S, Grzegory I, J. Cryst. Growth, 178, 174 (1997)
  4. Ejder E, J. Cryst. Growth, 22, 44 (1974)
  5. Elwell D, Feigelson RS, Simkins MM, Tiller WA, J. Cryst. Growth, 66, 45 (1984)
  6. Park YJ, Son MH, Kim EK, Min SK, J. Korean Phys. Soc., 32, 621 (1998)
  7. Zetterstrom RB, J. Mater. Sci., 5, 1102 (1970)
  8. Shmagin K, Muth JF, Lee JH, Kolbas RM, Balkas CM, Sitar Z, Davis RF, Appl. Phys. Lett., 71, 455 (1997)
  9. Okada T, Kurai S, Naoi Y, Nishino K, Inoko F, Sakai S, Jpn. J. Appl. Phys., 35, L1318 (1996)
  10. Fischer S, Wetzel C, Hansen WL, Courchesne EDB, Meyer BK, Haller EE, Appl. Phys. Lett., 69, 2716 (1996)
  11. Baranov PG, Mokhov EN, Ostroumov AO, Ramm MG, Ramm MS, Ratnikov VV, Roenkov AD, Vodakov YA, Wolfson AA, Saparin GV, Karpov SY, Zimina DV, Marakov YN, Juergensen H, MRS-1nternet J. NSR, article 50, 3 (1998)
  12. Sime RJ, Margrave JL, J. Phys. Chem., 60, 810 (1956)
  13. Groh R, Gerey G, Bartha L, Pankove JI, Phys. Status Solidi A-Appl. Res., 26, 353 (1974)
  14. Sakai S, Kurai S, Nishino K, Wada K, Sato H, Naoi Y, Mat. Res. Soc. Symp. Proc., 49, 15 (1997)
  15. Juza R, Hann H, Zeitschr. Anorgan. Allgem. Chem., 239, 285 (1938)
  16. Dingle R, Shell DD, Stokowski SE, Ilegems M, Phys. Rev., 4, 1211 (1971)
  17. Merz C, Kunzer M, Kaufmann U, Akasaki I, Amano H, Semicond. Sci. Technol., 11, 712 (1996)
  18. Fischer S, Steude G, Hofmann DM, Kurth F, Anders F, Topf M, Meyer BK, Bertram F, SChmidt M, Christen J, Eckey L, Holst J, Hoffmann A, Mensching B, Rauschenbach B, J. Cryst. Growth, 189/190, 556 (1998)
  19. Kim ST, Lee YJ, Chung SH, Moon DC, Semicond. Sci. Technol., 14, 156 (1999)
  20. Mohammad SN, Botchkarev AE, Salvador A, Kim W, Aktas O, Morkoc H, Philos. Mag. B-Phys. Condens. Matter Stat. Mech. Electron. Opt. Magn. Prop., 76, 131 (1997)