Polymer(Korea), Vol.40, No.5, 728-735, September, 2016
전기화학적 합성방법이 폴리아닐린의 전기화학적 특성 및 모폴로지에 미치는 영향
Effects of Electrodeposition Methods on Electrochemical and Morphological Properties of Polyaniline
E-mail:
초록
변전위법(potentiodynamic)과 정전류법(galvanostatic)으로 polyaniline 필름을 제조하여, 전기화학적 합성방법이 필름의 전기화학적 및 구조적 특성과 모폴로지에 미치는 영향을 확인하였다. 두 합성방법은 결정성뿐만 아니라 산화상태와 도핑레벨의 차이를 유발하였다. 또한 필름의 모폴로지는 서로 다른 성장과정에도 영향을 받았다. 변전위법으로 제조된 필름의 경우, layer-by-layer 성장을 통해 매끄럽고 균일한 모폴로지를 나타낸다. 반면에 정전류법으로 제조된 필름은 분해로 인해 거칠어진 모폴로지를 나타낸다. 변전위법과 정전류법으로 제조한 필름의거칠기(Rq)는 각각 94와 171 nm, 전도도는 2.74와 0.98 S/cm이다.
Polyaniline (PAni) films were electrodeposited in the potentiodynamic and galvanostatic modes, and the effects of the deposition methods on the electrochemical, structural, and morphological properties of the films are discussed. The two deposition methods resulted in different degrees of oxidation and doping degrees as well as film crystallinities. Furthermore, the morphologies of the films were affected by the different growth processes. In the case of the PAni film deposited in the potentiodynamic mode, a smoother and more homogeneous morphology was observed owing to the layer-by-layer growth of the film. On the other hand, in the case of the PAni film deposited in the galvanostatic mode, a rougher surface morphology was observed owing to the degradation process. The root-mean-square roughness values of the films deposited in the potentiodynamic and galvanostatic modes were 94 and 171 nm, respectively, while their conductivities were 2.74 and 0.98 S/cm, respectively.
- Alam M, Ansari AA, Shaik MR, Alandis NM, Arabian J. Chem., 6, 341 (2013)
- Savale PA, Shirale DJ, Datta K, Ghosh P, Shirsat MD, Int. J. Electrochem. Sci., 2, 595 (2007)
- Dhawale DS, Salunkhe RR, Jamadade VS, Gujar TP, Lokhande CD, Appl. Surf. Sci., 255(19), 8213 (2009)
- Popovic N, Jugovic BZ, Jokic B, Knezevic-Jugovc Z, Stevanovic JS, Grgur BN, Gvozdenovi MM, Int. J. Electrochem. Sci., 10, 1208 (2015)
- del Valle MA, Romero M, Diaz FR, Armijo F, del Rio R, Nunez I, Dalchiele EA, Int. J. Electrochem. Sci., 8, 12321 (2013)
- Balint R, Cassidy NJ, Cartmell SH, Acta Biomater., 10, 2341 (2014)
- Paik P, Kar KK, Surf. Eng., 24, 341 (2008)
- Das G, Yoon HH, Int. J. Nanomedicine, 10, 55 (2015)
- Dong QZ, Zhu LY, Wan HS, Guo CC, Yu G, Int. J. Electrochem. Sci., 9, 8024 (2014)
- Lin W, Xu K, Peng J, Xing Y, Gao S, Ren Y, Chen M, J. Mater. Chem. A, 3, 8438 (2015)
- Yang D, Lu W, Goering R, Mattes BR, Synth. Met., 159, 666 (2009)
- Vuki M, Kalaji M, Nyholm L, Peter LM, J. Electroanal. Chem., 332, 315 (1992)
- Song E, Choi JW, Nanomaterials, 3, 498 (2013)
- Wang DW, Li F, Zhao J, Ren W, Chen ZG, Tan J, Wu ZS, Gentle I, Lu GQ, Cheng HM, ACS Nano, 3, 1745 (2009)
- Baba A, Tian SJ, Stefani F, Xia CJ, Wang ZH, Advincula RC, Johannsmann D, Knoll W, J. Electroanal. Chem., 562(1), 95 (2004)
- Choi SJ, Park SM, J. Electrochem. Soc., 149, 26 (2002)
- Mallik A, Ray BC, Int. J. Electrochem., 2011, 16 (2011)
- Gu M, Zhang J, Li Y, Jiang L, Zhu JJ, Talanta, 80, 246 (2009)
- Venancio EC, Costa CAR, Machado SAS, Motheo AJ, Electrochem. Commun., 3, 229 (2001)
- Molapo KM, Ndangili PM, Ajayi RF, Mbambisa G, Mailu SM, Njomo N, Masikini M, Baker P, Iwuoha EI, Int. J. Electrochem. Sci., 7, 11859 (2012)
- Yang CH, Du JJ, Peng Q, Qiao RR, Chen W, Xu C, Shuai ZG, Gao MY, J. Phys. Chem. B, 113(15), 5052 (2009)
- Heinze J, Frontana-Uribe BA, Ludwigs S, Chem. Rev., 110(8), 4724 (2010)
- Gvozdenovic M, Jugovic B, Stevanovic J, Grgur B, Hem. Ind., 68, 673 (2014)
- Du X, Xu Y, Xiong L, Bai Y, Zhu J, Mao S, J. Appl. Polym. Sci., 131, 40827 (2014)
- Gaikwad PD, Shirale DJ, Savale PA, Datta K, Ghosh P, Pathan AJ, Rabbani G, Shirsat MD, Int. J. Electrochem. Sci., 2, 488 (2007)
- Sazou D, Kourouzidou M, Pavlidou E, Electrochim. Acta, 52(13), 4385 (2007)
- Kulkarni MV, Viswanath AK, Eur. Polym. J., 40, 379 (2004)
- Trchova M, Stejskal J, Pure Appl. Chem., 83, 1803 (2011)
- Gomes EC, Oliveira MAS, Am. J. Polym. Sci., 2, 5 (2012)
- Pharhad-Hussain AM, Kumar A, Bull. Mat. Sci., 26, 329 (2003)
- Babu VJ, Vempati S, Ramakrishna S, Mater. Sci. Appl., 4, 1 (2013)
- Abdiryim T, Xiao-Gang Z, Jamal R, Mater. Chem. Phys., 90(2-3), 367 (2005)
- Dhand C, Das M, Sumana G, Srivastava AK, Pandey MK, Kim CG, Datta M, Malhotra BD, Nanoscale, 2, 747 (2010)
- Kemp NT, Cochrane JW, Newbury R, Synth. Met., 159, 435 (2009)
- Prasad KR, Munichandraiah N, J. Electrochem. Soc., 149, 1393 (2002)
- Cheng L, Dong S, Electrochem. Commun., 1, 159 (1999)
- Choi SJ, Park SM, Adv. Mater., 12(20), 1547 (2000)
- Mondal SK, Prasad KR, Munichandraiah N, Synth. Met., 148, 275 (2005)
- Cui CQ, Su XH, Lee JY, Polym. Degrad. Stabil., 41, 69 (1993)
- Khalid MN, Yasin S, Khan MR, Turk. J. Phys., 28, 271 (2004)
- Jagadale AD, Kumbhar VS, Bulakhe RN, Lokhande CD, Energy, 64, 234 (2014)
- Lee KH, Cho SU, Park SH, Heeger AJ, Lee CW, Lee SH, Nature, 441, 65 (2006)
- Varma SJ, Xavier F, Varghese S, Jayalekshmi S, Polym. Int., 61, 743 (2012)
- Zakaria Z, Halim NFA, Schleusingen MHV, Islam AKMS, Hashim U, Ahmad MN, J. Nanomater., 2015, 6 (2015)
- Bleda-Martinez MJ, Peng C, Zhang S, Chen GZ, Morallon E, Cazorla-Amoros D, J. Electrochem. Soc., 155, 672 (2008)
- Tawde S, Mukesh D, Yakhmi JV, Synth. Met., 125, 401 (2002)