Macromolecular Research, Vol.24, No.9, 777-781, September, 2016
Synergistic effect of carbon nanotubes on the flame retardancy of poly(methyl methacrylate)/zinc oxalate nanocomposites
E-mail:,
Carbon nanotubes have incorporated in poly(methyl methacrylate) (PMMA) nanocomposites as a synergist of zinc oxalate nanoparticles in order to enhance the flame retardancy. PMMA nanocomposites filled with the newly developed environmentally friendly zinc oxalate nanoparticles and with multi-walled nanotubes (MWNTs), both serving as flame retardants, were prepared by applying the solution blending method. The fire behavior of these composites was systematically studied by carrying out limiting oxygen index (LOI) and pyrolysis combustion flow calorimetry (PCFC) tests. The introduction of MWNTs into the PMMA/zinc oxalate nanocomposites improved the LOI values and markedly decreased the peak heat release rate. It can be suggested that this improvement in the flame retardancy resulted from the formation of stable protective char layers during the combustion process.
Keywords:poly(methyl methacrylate);nanocomposites;flame retardancy;zinc oxalate;multi-walled nanotube (MWNT)
- Mark HF, Bikales NM, Overberger CG, Menges G, Encyclopedia of Polymer Science and Technology, John Wiley and Sons Ltd., New York, 1985.
- Huang XY, Brittain WJ, Macromolecules, 34(10), 3255 (2001)
- Gross S, Camozzo D, Noto VD, Armelao L, Tondello E, Eur. Polym. J., 43, 673 (2007)
- Hu YQ, Zhou SX, Wu LM, Polymer, 50(15), 3609 (2009)
- Nair AB, Kalappura UG, Kurian P, Joseph R, Polym. Eng. Sci., 53(4), 699 (2013)
- Smith R, Georlette P, Finberg I, Reznick G, Polym. Degrad. Stabil., 54, 167 (1996)
- Hippi U, Mattila J, Korhonen M, Seppala J, Polymer, 44, 1193 (2005)
- Pinto UA, Visconte LLY, Nunes RCR, Eur. Polym. J., 37, 1935 (2001)
- Du L, Qu B, Xu Z, Polym. Degrad. Stabil., 91, 995 (2006)
- Li H, Hu Y, Yang L, Wang Z, Chen Z, Fan W, Macromol. Mater. Eng., 289, 984 (2004)
- Camino G, Maffezzoli A, Braglia M, Lazzaro MD, Zammarano M, Polym. Degrad. Stabil., 74, 457 (2001)
- Qin HL, Zhang SM, Zhao CG, Hu GJ, Yang MS, Polymer, 46(19), 8386 (2005)
- Kiliaris P, Papaspyrides CD, Prog. Polym. Sci, 35, 902 (2010)
- Isitman NA, Kaynak C, Polym. Degrad. Stabil., 95, 1523 (2010)
- Visakh PM, Arao Y, Flame Retardants (Polymer Blends, Composites and Nanocomposites), Springer, New York, 2015.
- Kashiwagi T, Grulke E, Hilding J, Harris R, Awad W, Douglas J, Macromol. Rapid Commun., 23(13), 761 (2002)
- Li C, Kang NJ, Labrandero SD, Wan JT, Gonzalez C, Wane DY, Ind. Eng. Chem. Res., 53(3), 1040 (2014)
- Kashiwagi T, Du FM, Winey KI, Groth KA, Shields JR, Bellayer SP, Kim H, Douglas JF, Polymer, 46(2), 471 (2005)
- He Q, Yan T, Yan X, Ding D, Wang Q, Luo Z, Shen TD, Wei S, Cao D, Guo Z, Macromol. Chem. Phys., 115, 327 (2014)
- Holdsworth AF, Horrocks AR, Kandola BK, Price D, Polym. Degrad. Stabil., 110, 290 (2014)
- Mohamed MA, Galwey AK, Halawy SA, Thermochim. Acta, 429(1), 57 (2005)
- Malecka B, Drozdz-Ciesla E, Malecki A, Thermochim. Acta, 423(1-2), 13 (2004)
- Xu C, Xu G, Liu Y, Wang G, Solid State Commun., 122, 175 (2002)
- Ahmad T, Vaidya S, Sarkar N, Ghosh S, Ganuli AK, Nanotechnology, 17, 1236 (2006)
- Lomakin SM, Zaikov GE, Modern Polymer Flame Retardancy, Brill Academic Publishers, Netherlands, 2003.
- Lu SY, Hamerton I, Prog. Polym. Sci, 27, 1661 (2002)
- Yang H, Fu Q, Cheng X, Yuen RKK, Zhang H, Procedia Eng., 62, 778 (2013)
- Lyon RE, Walters RN, J. Anal. Appl. Pyrolysis, 71, 27 (2004)
- Cipiriano BH, Kashiwagi T, Raghavan SR, Yang Y, Grulke EA, Yamamoto K, Shields JR, Douglas JF, Polymer, 48(20), 6086 (2007)