Clean Technology, Vol.22, No.3, 190-195, September, 2016
더블 베이스 추진제의 비군사화 소각공정
Incineration Process of Double Base Propellant for Demilitarization
E-mail:
초록
회전식 소각공정은 고에너지 물질의 폐기처리를 위해 현재 상용화 되고 있는 기술로 열풍을 이용하여 대상물질을 열분해하는 공정이며 TNT, RDX 및 Composition B를 통한 열분해 공정의 사전연구가 진행되었다. 본 연구의 대상물질은 나이트로셀룰로스(nitrocellulose, NC)와 나이트로글리세린(nitroglycerine, NG)의 혼합물인 더블베이스 추진제(M8)로 선정하였다. M8 추진제의 열분해 반응은 응축상 반응(condensed phase reaction, CPR)과 기체상 반응(gas phase reactions, GPRs)로 구성되어 있다. CPR의 경우 흡열반응으로 4가지 화합물을 생성하며, GPRs의 경우 59개의 가스화합물 및 365개의 흡열ㆍ발열반응으로 구성되어 있다. 본 연구는 gPROMS 소프트웨어를 이용하여 관형반응기의 수학적 모델링을 완성하였으며, 운전온도 및 유속 변화에 따른 케이스스터디를 진행하였다. 상대적으로 낮은 유속 및 높은 공정온도는 반응기의 내부온도(Case3: 953 K, Case6: 1300 K)를 상승 시켰으며, CO2와 H2O 몰농도 값 상승을 통해 완전연소율이 증가하는 것을 확인할 수 있었다. 본 연구 내열형 소각로 설계, 운전조건을 도출하는데 있어 기초 자료로 활용될 수 있을 것으로 사료된다.
The thermal decomposition of waste energetic materials such as TNT, RDX and composition B in a commercial rotary kiln has previously been carried out. As part of the demilitarization process, the thermal decomposition of homogeneous double base propellant (DB) used in M8 and consisting predominantly of nitrocellulose and nitroglycerine is examined with respect to a number of operating conditions. A single condensed phase reaction with 4 species and 365 gas phase reactions and 59 species are considered. Simulation results show the sensitivity of the thermal decomposition of DB with temperature and velocity. At relatively low velocity with constant inlet hot air temperature, temperature in the rotary kiln was found to be highest, 953 K and 1300 K for cases 3 and 6 respectively. Illustrating that optimum operating temperature can be achieved by controlling the inlet velocity without additional cooling systems.
Keywords:Demilitarization;Double base propellant;Thermal decomposition;Rotary kiln;Dynamic simulation
- Lee JC, Park BS, Go BN, Defense Technol., 364, 34 (2001)
- Kwon DE, Choi MG, Lee SG, Asia-pacific J. Multimedia Services Converg. Art, Humanities, and Sociol., 6(5), 421 (2016)
- Jang GH, Beak BH, Seo NS, Defense Technol., 400, 112 (2012)
- “Analysis of Current Techniques and Operation of Commercial Rotary Kilns in Demilitarization of Propellants and Explosives,” Agency for Defense Development (2013).
- Kim HS, Korean Chem. Eng. Res., 44(5), 435 (2006)
- DeFrank JJ, Guelta MA, Haley MV, “Treatment of M1 and M8 Hydrolysates with Hd/Tetrytol Adapted Immobilized Cell Bioreactors,” Report (2002).
- “Analysis Of Engineering Design Studies for Demilitarization of Assembled Chemical Weapons at Pueblo Chemical Depot,” Board on Army Science and Technology National Research Council, Washington DC (2001).
- Akhavan J, “The Chemistry of Explosive,” 2nd ed., Royal Military College of Science, Cambridge (2004).
- Kuo KK, Acharya R, “Applications of Turbulent and Multiphase Combustion,” 1st ed., John Wiley & Sons, INC., New Jersey (2012).
- Miller MS, Anderson WR, “Cyclops, a Breakthrough Code to Predict Solid Propellant Burning Rate,” Army Research Laboratory, Report No. ARL-TR-2910 (2003).
- Roh TS, Tseng IS, Yang V, J. Propul. Power., 11(4), 640 (1995)
- Kim SH, Nyande BW, Kim HS, Park JS, Lee WJ, Min O, J. Hazard. Mater., 305(5), 120 (2016)
- Kim SH, Yeom GH, Moon I, Chae JS, Kim HS, Oh M, Clean Technol., 20(4), 398 (2014)
- http://www.psenterprise.com/modelbuilder.html (accessed May. 2016).