화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.27, No.5, 467-471, October, 2016
Fluorine이 도입된 Quinoxaline과 Fluorene 골격을 가진 고분자의 합성 및 특성분석
Synthesis and Photovoltaic Properties of Copolymers with Fluorinated Quinoxaline and Fluorene Moiety
E-mail:
초록
새로운 전자 받개인 6,7-difluoro-2,3-dihexylquinoxaline을 이용하여 유기 태양 전지형 고분자를 개발하였다. Fluorene과 6,7-difluoro-2,3-dihexylquinoxaline으로 Suzuki polymerization방법을 이용하여 낮은 HOMO 에너지를 가지는 PFDTQxF 고분자를 합성하였다. 필름상태의 PFDTQxF은 368과 493 nm에서 두 개의 흡광도를 보였다. PFDTQxF의 HOMO와 LUMO 에너지는 각각 -5.55와 -3.91 eV을 나타내었다. PFDTQxF의 태양전지 소자는 0.47 V의 VOC와 4.48 mA/cm2의 JSC와 0.32의 FF를 가지고 있어 0.78%의 에너지 효율을 나타내었다.
New electron deficient moiety, 6,7-difluoro-2,3-dihexylquinoxaline, was developed for the push-pull type copolymer for organic photovoltaics (OPVs). The PFDTQxF with lower HOMO energy level was synthesized using fluorene and 6,7-difluoro-2,3-dihexylquinoxaline by Suzuki polymerization. The PFDTQxF thin film shows two absorption peaks at 368 and 493 nm. The HOMO and LUMO energy levels of PFDTQxF are calculated -5.55 and -3.91 eV, respectively. The device comprising PFDTQxF showed a VOC value of 0.47 V, a JSC value of 4.48 mA/cm2, and a FF of 0.32, which yielded PCE of 0.78%, under the illumination of AM 1.5.
  1. Chen HY, Yeh SC, Chen CT, Chen CT, J. Mater. Chem., 22, 21549 (2012)
  2. Song S, Jin Y, Park SH, Cho S, Kim I, Lee K, Heeger AJ, Suh H, J. Mater. Chem., 20, 6517 (2010)
  3. Kreb FC, Nielsen TD, Fyenbo J, Wadstrom M, Pedersen MS, Energy Environ. Sci., 3, 512 (2010)
  4. Kim JY, Lee K, Coates NE, Moses D, Nguyen TQ, Dante M, Heeger AH, Science, 317, 222 (2007)
  5. Scharber MC, Wuhlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ, Brabec CL, Adv. Mater., 18(6), 789 (2006)
  6. Chakravarthi N, Kranthiraja K, Song M, Gunasekar K, Jeong P, Moon SJ, Shin WS, Kang IN, Lee JW, Jin SH, Sol. Energy Mater. Sol. Cells, 122, 136 (2014)
  7. Xiao SQ, Zhou HX, You W, Macromolecules, 41(15), 5688 (2008)
  8. Thompson BC, Frechet JMJ, Angew. Chem.-Int. Edit., 47, 58 (2008)
  9. Ha J, Kim YJ, Park J, An TK, Kwon SK, Park CE, Kim YH, Chem. Asian J., 9, 1045 (2014)
  10. Yang Y, Wu R, Wang X, Xu X, Li Z, Li K, Peng Q, Chem. Commun., 50, 439 (2014)
  11. Hai J, Yu W, Zhao B, Li Y, Yin L, Zhu E, Bian L, Zhang J, Wu H, Tang W, J. Polym. Sci. A: Polym. Chem., 5, 1163 (2014)
  12. Song HJ, Kim DH, Lee EJ, Moon DK, J. Mater. Chem. A, 4, 6010 (2013)
  13. Iyer A, Bjorgaard J, Anderson T, Kose ME, Macromolecules, 45(16), 6380 (2012)
  14. Chen HC, Chen YH, Liu CC, Chien YC, Chou SW, Chou PT, Chem. Mater., 24, 4766 (2012)
  15. Chen HC, Chen YH, Liu CH, Hsu YH, Chien YC, Chuang WT, Cheng CY, Liu CL, Chou SW, Tung SH, Chou PT, J. Polym. Sci. A: Polym. Chem., 4, 3411 (2013)
  16. Song S, Choi HI, Shin IS, Suh H, Hyun MH, Lee GD, Park SS, Park SH, Jin Y, Bull. Korean Chem. Soc., 35, 2245 (2014)
  17. Lee W, Cha H, Kim YJ, Jeong JE, Hwang S, Park CE, Woo HY, ACS Appl. Mater. Interfaces, 6, 20510 (2014)
  18. Cao KC, Wu ZW, Li SG, Sun BQ, Zhang GB, Zhang Q, J. Polym. Sci. A: Polym. Chem., 51(1), 94 (2013)
  19. Cho S, Seo JH, Kim SH, Song S, Jin Y, Lee K, Suh H, Heeger AJ, Appl. Phys. Lett., 93, 263301 (2008)
  20. Song S, Choi HI, Shin IS, Lee J, Hyun MH, Suh H, Park SS, Park SH, Jin Y, Mol. Cryst. Liq. Cryst., 620, 100 (2015)