화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.27, No.5, 537-542, October, 2016
열분해잔사유로부터 불균일계 불소화공정에 의해 제조된 메조페이스 피치의 특성
The Characteristics of Mesophase Pitch Prepared by Heterogeneous Fluorination Process from Pyrolysis Fuel Oil
E-mail:
초록
본 연구에서는 불균일계 불소화 개질 공정을 이용하여 열분해잔사유(PFO)로부터 메조페이스 피치를 제조하였다. 이공정은 다양한 온도의 직접 불소화 공정과 390 ℃의 열처리 공정을 통하여 진행하였다. 제조된 피치는 연화점, 원소분석, 푸리에 변환 적외선 분광 분석, 고분해능 X-ray 회절 분석 그리고 편광 현미경 분석을 실시하였다. 제조된 피치의 탄소 함량은 직접 불소화 공정의 반응 온도 증가에 따라 함께 상승하였으며, 그 산소, 질소 그리고 황 성분은 완전하게 제거되었다. 불소화 온도가 증가함에 따라서, 메조페이스 소구체의 생성, 성장, 합체, 정렬이 관찰되었다. 탄소 육각망면의 층간간격이 감소하였고 결정자 크기가 증가하였다. 또한, 지방족 화합물의 축.중합으로 인한 방향족 화합물의 함량 증가가 관찰되었다. 이러한 결과는 반응 온도의 증가에 따라 증가된 불소 라디칼의 반응성에 기인한다. 불소화 반응은 열분해잔사유가 라디칼 반응에 의한 중합반응의 촉진으로, 방향족 화합물의 생성을 돕는 것으로 판단된다.
In this study, we have prepared mesophase pitch from pyrolysis fuel oil (PFO) by heterogeneous reforming process. This process was conducted by direct fluorination at various temperature and followed by the heat treatment at 390 ℃. The reformed pitch was then investigated by softening point analysis, elemental analysis, fourier-transform infrared spectroscopy, high resolution X-ray diffraction and polarization microscope analysis. Carbon contents of reformed pitch increased according to increasing the reaction temperature of fluorination, while oxygen, nitrogen and sulfur contents were completely eliminated. As the fluorination temperature increased, the creation, growth, coalescence and alignment process of mesophase spheres were observed. Also the interlayer spacing of carbon hexagonal planar structure decreased, while its crystalline size increased. In addition, aromatic ring compound contents increased by the condensation polymerization of aliphatic compound. These results can be attributed to the radical reactivity of the fluorine increased as the reaction temperature increased. It was considered that the fluorination reaction could help PFO to generate aromatic compounds, via promoting polymerization by radical reaction.
  1. Brooks JD, Taylor GH, Carbon, 3, 185 (1965)
  2. Brooks JD, Taylor GH, The formation of some graphitizing carbons, In: Walker PL (ed.), Chemistry and Physics of Carbon, Vol. 4, p. 243-286, Marcel Dekker, USA (1968).
  3. Singer LS, Process for producing high mesophase content pitch fibers, U. S. Patent, 3,919,387 (1975).
  4. Diefendorf RJ, Riggs DM, Forming optically anisotropic pitches, U. S. Patent, 4,208,267 (1980).
  5. Mochida I, Nakamura EI, Maeda K, Takeshida K, Carbon, 13, 489 (1975)
  6. Sakawa M, Uno T, Hara Y, Fuel, 62, 571 (1983)
  7. Mochida I, Shimizu K, Korai Y, Carbon, 28, 311 (1990)
  8. Mochida I, Kudo K, Fukkuda N, Takeshita K, Takahashi R, Carbon, 13, 135 (1975)
  9. Mochida I, Shimizu K, Korai Y, Sakai Y, Fujiyama S, Toshima H, Hono T, Carbon, 30, 55 (1992)
  10. Mochida I, Shimizu K, Korai Y, Carbon, 26, 843 (1988)
  11. Korai Y, Nakamura M, Mochida I, Sakai Y, Fujiyama S, Carbon, 29, 561 (1991)
  12. Jung MJ, Lim JW, Park IJ, Lee YS, Appl. Chem. Eng., 21(3), 317 (2010)
  13. Lee BK, Rho JS, Kim H, Polym. Sci. Technol., 13(6), 751 (2002)
  14. Touhara H, Okino F, Carbon, 38, 241 (2000)
  15. Tressaud A, Durand E, Labrugere C, J. Fluor. Chem., 125, 1639 (2004)
  16. Lee YS, Lee BK, Carbon, 40, 2461 (2008)
  17. Ryu SK, In SJ, Kim JY, Rhee BS, Korean J. Chem. Eng., 27, 712 (1989)
  18. Wang Y, Korai Y, Mochida I, Nagayama K, Hatano H, Fukuda N, Carbon, 39, 1627 (2011)
  19. Lomaev MI, Skakun VS, Sosnin EA, Tarasenko VF, Shitts DV, Erofeev MV, Phys. Usp., 46, 193 (2003)
  20. Mora E, Santamaria R, Blanco C, Granda M, Menendez R, J. Anal. Appl. Pyrolysis, 68-69, 409 (2003)
  21. Wazir AH, Kakakhel L, New Carbon Mater., 24, 83 (2009)
  22. Yamada Y, Honda H, Abe T, J. Jpn. Pet. Inst., 18, 758 (1979)
  23. Cheng Y, Fang C, Su J, Yu R, Li T, J. Anal. Appl. Pyrolysis, 109, 90 (2014)
  24. Kumar S, Srivastava M, J. Anal. Appl. Pyrolysis, 112, 192 (2015)
  25. Gui ZS, Cheng WB, Quan S, Chin. Phys. B, 19, 108101 (2010)