화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.42, 95-100, October, 2016
Upgrading the characteristics of biochar from cellulose, lignin, and xylan for solid biofuel production from biomass by hydrothermal carbonization
E-mail:
In this study, hydrothermal carbonization of the main lignocellulosic components was investigated as a method of renewable solid biofuel production from biomass. Hydrothermal carbonization of cellulose, xylan, and lignin was experimentally conducted between 150 °C and 280 °C, and the chemical and fuel properties of the resulting biochars were investigated. The properties of each of the three biomass components were greatly improved by hydrothermal carbonization and were similar to coal-like fuel substances; an increase in fixed carbon and carbon contents was also observed. Furthermore, by assessing carbon recovery and energetic retention efficiency, we could establish the optimum condition for hydrothermal carbonization of biomass to produce energy. The C/O and C/H ratios of all of the obtained biochars were decreased and found to be similar to those of lignite and sub-bituminous coal. The calorific values of the biochars were between 23-26 MJ/kg at a reaction temperature of 220 °C. The results of this study indicate that hydrothermal carbonization can be used as an effective method to generate highly energy-efficient renewable fuel resources from biomass.
  1. Chum HL, Overend RP, Fuel Process. Technol., 71(1-3), 187 (2001)
  2. Goldemberg J, Coelho ST, Energy Policy, 32(6), 711 (2004)
  3. Kelly-Yong TL, Lee KT, Mohamed AR, Bhatia S, Energy Policy, 35(11), 5692 (2007)
  4. Liu TT, McConkey B, Huffman T, Smith S, MacGregor B, Yemshanov D, Kulshreshtha S, Appl. Energy, 130, 222 (2014)
  5. McKendry P, Bioresour. Technol., 83(1), 37 (2002)
  6. Huber GW, Iborra S, Corma A, Chem. Rev., 106(9), 4044 (2006)
  7. Laine C, Structures of Hemicelluloses and Pectins in Wood and Pulp, Helsinki University of Technology, Espoo, Finland, 2015.
  8. Vassilev SV, Baxter D, Andersen LK, Vassileva CG, Fuel, 89(5), 913 (2010)
  9. Hoekman SK, Broch A, Robbins C, Energy Fuels, 25(4), 1802 (2011)
  10. Xiao LP, Shi ZJ, Xu F, Sun RC, Bioresour. Technol., 118, 619 (2012)
  11. Falco C, Caballero FP, Babonneau F, Gervais C, Laurent G, Titirici MM, Baccile N, Langmuir, 27(23), 14460 (2011)
  12. Baxter L, Fuel, 84(10), 1295 (2005)
  13. McKendry P, Bioresour. Technol., 83(1), 47 (2002)
  14. Demirbas A, Prog. Energy Combust. Sci., 31(2), 171 (2005)
  15. Yaman S, Energy Conv. Manag., 45(5), 651 (2004)
  16. Jenkins BM, Baxter LL, Miles TR, Miles TR, Fuel Process. Technol., 54(1-3), 17 (1998)
  17. Liu ZG, Balasubramanian R, Appl. Energy, 114, 857 (2014)
  18. Funke A, Ziegler F, Biofuels Bioprod. Biorefin., 4, 160 (2010)
  19. Kim D, Lee K, Park KY, Fuel, 130, 120 (2014)
  20. Libra JA, Ro KS, Kammann C, Funke A, Berge ND, Neubauer Y, Titirici MM, Fuhner C, Bens O, Kern J, Emmerich KH, Biofuels, 2, 71 (2011)
  21. Kim D, Prawisudha P, Yoshikawa K, J. Combust., 2012, 8 (2012)
  22. Garrote G, Dominguez H, Parajo JC, Eur. J. Wood Wood Prod., 57, 191 (1999)
  23. Sevilla M, Fuertes AB, Carbon, 47, 2281 (2009)
  24. Quitain AT, Faisal M, Kang K, Daimon H, Fujie K, J. Hazard. Mater., 93(2), 209 (2002)
  25. Li L, Diederick R, Flora JR, Berge ND, Waste Manage., 33, 2478 (2013)
  26. Lu XW, Pellechia PJ, Flora JRV, Berge ND, Bioresour. Technol., 138, 180 (2013)
  27. Mumme J, Eckervogt L, Pielert J, Diakite M, Rupp F, Kern J, Bioresour. Technol., 102(19), 9255 (2011)
  28. Dinjus E, Kruse A, Troger N, Chem. Eng. Technol., 34(12), 2037 (2011)
  29. Reza MT, Lynam JG, Uddin MH, Coronella CJ, Biomass Bioenerg., 49, 86 (2013)
  30. Kang SM, Li XH, Fan J, Chang J, Ind. Eng. Chem. Res., 51(26), 9023 (2012)
  31. Reza MT, Uddin MH, Lynam JG, Hoekman SK, Coronella CJ, Biomass Convers. Biorefin., 4, 311 (2014)
  32. Keiluweit M, Nico PS, Johnson MG, Kleber M, Environ. Sci. Technol., 44, 1247 (2010)
  33. Roman S, Nabais JMV, Laginhas C, Ledesma B, Gonzalez JF, Fuel Process. Technol., 103, 78 (2012)