화학공학소재연구정보센터
Advanced Functional Materials, Vol.26, No.25, 4491-4500, 2016
Tough Hydrogels with Programmable and Complex Shape Deformations by Ion Dip-Dyeing and Transfer Printing
Stimuli-responsive hydrogels with high mechanical strength, programmable deformation, and simple preparation are essential for their practical applications. Here the preparation of tough hydrogels with programmable and complex shape deformations is reported. Janus hydrogels with different compositions and hydrophilic natures on the two surfaces are first prepared, and they exhibit reversible bending/unbending upon swelling/deswelling processes. More impressively, the deformation rate and extent of the hydrogels can further be easily controlled through an extremely simple and versatile ion dip-dyeing (IDD) and/or ion transfer printing (ITP) method. By selectively printing proper patterns on 1D gel strips, 2D gel sheets and 3D gel structures, the transformations from 1D to 2D, 2D to 3D, and 3D to more complicated 3D shapes can be achieved after swelling the ion-patterned hydrogels in water. The swelling-deformable Janus and ion-patterned hydrogels with high mechanical strengths and programmable deformations can find many practical applications, such as soft machines.