화학공학소재연구정보센터
Applied Biochemistry and Biotechnology, Vol.179, No.7, 1129-1142, 2016
Physicochemical Properties and Storage Stability of Microencapsulated DHA-Rich Oil with Different Wall Materials
This study aimed to evaluate the physicochemical properties and storage stability of microencapsulated DHA-rich oil spray dried with different wall materials: model 1 (modified starch, gum arabic, and maltodextrin), model 2 (soy protein isolate, gum arabic, and maltodextrin), and model 3 (casein, glucose, and lactose). The results indicated that model 3 exhibited the highest microencapsulation efficiency (98.66 %) and emulsion stability (> 99 %), with a moisture content and mean particle size of 1.663 % and 14.173 mu m, respectively. Differential scanning calorimetry analysis indicated that the Tm of DHA-rich oil microcapsules was high, suggesting that the entire structure of the microcapsules remained stable during thermal processing. A thermogravimetric analysis curve showed that the product lost 5 % of its weight at 172 A degrees C and the wall material started to degrade at 236 A degrees C. The peroxide value of microencapsulated DHA-rich oil remained at one ninth after accelerated oxidation at 45 A degrees C for 8 weeks to that of the unencapsulated DHA-rich oil, thus revealing the promising oxidation stability of DHA-rich oil in microcapsules.