Polymer(Korea), Vol.23, No.4, 523-532, July, 1999
삼성분계 고분자 블렌드의 강인화에 관한 연구
A Study on the Toughening of Ternary Polymer Blends
E-mail:
초록
폴리페닐렌 옥사이드 (PPO)/폴리아미드/충격보강 고무로 이루어진 삼성분계 블렌드에서 폴리아미드의 말단기인 아민기와 반응성이 높은 무수말레인산 (MAH)기가 그라프트된 PPO (PPO*)를 상용화제로 도입하고. 충격보강 고무로서 스티렌-에틸렌부틸렌-스티렌(SEBS)을 사용하여 폴리아미드의 연속상에 충격보강 고무가 PPO 분산상에 내재된 모폴로지를 유지하면서 분산상의 크기 변화에 따른 삼성분계 블렌드의 강인화 현상을 연구하였다. 전단항복에 의하여 변형되는 폴리아디드 연속상의 효과적인 강인화를 위하여 임계 입자간 거리조건을 만족하기 위한 분산상 크기의 상한선 뿐만 아니라, 고무상에서의 동공 생성을 위한 하한선이 존재함을 확인하였다. 주언진 삼성분계 블렌드의 강인화 현상을 기존의 폴리아미드/고무로 이루어진 이성분계 블렌드의 강인화 현상을 바탕으로 평균 입자간 거리를 구하였다. 폴리아미드의 부피분율을 60%로 고정시킨 상태에서 PPO에 PPO*의 양을 변화시켜 분산상의 크기를 조절한 경우의 임계 입자간 거리는 약 0.18 ㎛로서 기존의 폴리아미드/SEBS 이성분계로부터 보고된 값과 유사함을 확인하였다.
The rubber toughening of ternary blends based on poly(phenylene oxide)(PPO)/polyamide/impace modifier has been studied with the incorporation of maleic anhydride (MAH) grafted PPO(PPO*) as a reactive compatibilizer as well as styrene-ethylene butylene-styrene(SEBS) as a rubbery impact modifier for the blends. The major focus has been placed on the effect of the size of dispered particls and their interparticle distance on the brittleductile transition of the blends while keeping the unique morphology in which the rubber is preferentially located in the dispered PPO phase. Regarding the present ternary blend as a pseudo-binary system consisting of a consisting of a composite domain of SEBS/PPO in a polyamide matrix, it was confirmed that both lower and upper limits of domain size exist for the effective shear yielding of polyamide matrix primarily followed by cavitation in the rullbe phase. The observed value of the lower limit was about 0.2 ㎛ and the interparticle distances for particles larger than this size were calculated for the blend containing 60 % of polyamide with various contents of PPO*. Based on this analysis, the critical interparticle distance obtained was 0.18 ㎛ which is close to the value reported in conventional polyamide/SEBS binary blends.
- Bucknall CB, "Toughened Plastics," Applied Science, Barking (1977)
- Collyer AA, "Rubber Toughened Engineering Plastics," Chapman & Hall, New York (1994)
- Boyer RF, Keskkula H, "Encyclopedia of Science and Technology," ed. by N. Bikales, Wiley, New York (1970)
- Turley SG, Keskkula H, Polymer, 21, 466 (1980)
- Donald AM, Kramer EJ, J. Appl. Polym. Sci., 27, 3729 (1982)
- Keskkula H, "Adv. Chem. Ser.," ed. by C.K. Riew, vol. 222, p. 289, Am. Chem. Soc., Washington, D.C. (1989)
- Wu S, Polymer, 26, 1855 (1985)
- Borggreve RJM, Gaymans RJ, Schuijer J, Housz JFI, Polymer, 28, 1489 (1987)
- Wu S, J. Appl. Polym. Sci., 35, 549 (1988)
- Ueno K, Murayama T, U.S. Patent, 4,315,086 (1982)
- Kim JH, Char K, Kim H, Ryu SH, paper in preparation
- Kim J, Char K, Korean J. Rheol., 5(2), 170 (1993)
- Sundararaj U, Macosko CW, Macromolecules, 28(8), 2647 (1995)
- Baker RE, Saleem M, Polymer, 28, 2057 (1987)
- Fowler MW, Baker WE, Polym. Eng. Sci., 28, 1427 (1988)
- Ostenbrink AJ, Dijkstra K, Wiegersma S, Wal AVD, Gaymans RJ, Proc. 8. Int. Conf. Deformation, Yield and Fracture of Polymers, p. 50, Cambridge (1991)
- Oshinski AJ, Keskkula H, Paul DR, Polymer, 33, 268 (1992)
- Michler GH, Acta Polym., 44, 113 (1993)
- Sue HJ, Yee AF, J. Mater. Sci., 26, 3449 (1991)
- Hobbs SY, Dekkers MEJ, J. Mater. Sci., 24, 1316 (1989)