화학공학소재연구정보센터
Polymer(Korea), Vol.23, No.4, 569-579, July, 1999
에폭시/산무수물계의 열적. 기계적 성질 : 혼합비와 경화촉진제의 효과
Thermal and Mechanical Properties in an Epoxy/Anhydride System: Effect of Mixing Ratio and Accelerator
E-mail:
초록
에폭시와 산무수물계의 혼합비 (γ=산무수물/에폭시)를 0.3, 0.5, 0.7, 0.9, 1.1로 변화시켜 두 종류의 경화촉진제 1-cyanoethyl-2-ethyl-4-methyl imidazole (2E4MZ-추)과 N,N-dimethyl benzyl amine (BDMA)을 각각 첨가한 미경화물의 경화거동과 경화물의 열적. 기계적 성질을 조사하였다. 미경화물ㄹ의 경화거동을 시차주사 열량분석기 (differential scanning calorimeter, DSC)로 조사해 본 결과 경화반응기구가 혼합비와 경화촉진제에 크게 영향을 받는다는 것을 알 수 있었다. 그리고 105 ℃에서 10시간 경화시킨 것 (선견화물)과 이것을 다시 160 ℃에서 5시간 경화시킨 것 (후경화물)의 성질을 시차주사 열량분석기와 동역학측정기 (dynamic mechanical anasition temperature, Tg)는 2E4MZ-CN의 경우 γ이 변화할 때 128.7-139.1 ℃의 범위에서 큰 변화를 보이지 않지만, 후경화 처리를 하면 γ=1.1에서 Tg가 130.2 ℃이고 γ값이 감소함에 따라 점차 증가하여 γ=0.3에서는 Tg가 158.3 ℃로 최대가 되었다. 반면에 BDMA의 경우는 선경화물과 후경화물의 Tg가 화학양론비인 γ=0.9애소 137.4 ℃와 147.9 ℃로 각각 최대치를 나타내었다. 본 연구에서는 선경화물과 후경화물의 가교점간의 평균분자량 (Mc), 유리상에서의 탄성율 (E`g), 그리고 이차전이 등도 조사하였다.
Cure behavior and thermal/mechanical properties of an epoxy/anhydride system with two different accelerators, 1-cyanoethyl-2-ethy-4-methyl imidazole(2E4MZ-CN) and N,N-dimethyl benzyl amine (BDMA), were examined for samples with various mixing ratios of anhydrie to epoxy (γ=0.3, 0.5, 0.7, 0.9, 1.1). Differential scanning calorimeter(DSC) experiments for uncured samples show that cure process is greatly influenced by bothe γ and accelerator. Samples precured at 105 ℃ for 10 h and postcured at 160 ℃ for 5 h after the precure were also investigated by differential scanning calorimeter and dynamic mechanical analyzer(DMA). For 2E4MZ-CN, the glass transition temperature(Tg) of the precured samples does not change much with respect to γ anging from 128.7 ℃ to 139.1 ℃, while that of the postcured increases gradually with decreasign γ from 130.2 ℃ (γ=1.1) to 158.3 ℃(γ=0.3). However, for BDMA, the maxima in Tg vs. γ for the cured and the postcured occur at a stoichiomeric mixture (γ=0.9): Tg=137.4 ℃ and 147.9 ℃, respectively. In this study, the average molecular weight between crosslinks(Mc), modulus at a glassy state(Eg''), and secondary transition were also examined for various mixing ratios with different accelerators.
  1. Mita TF, Bauer RS, "Epoxy Resin-Chemistry and Technology," ed. by C.A. May, Marcel Dekker, Inc., New York (1988)
  2. Ellis B, "Chemistry and Technology of Epoxy Resins," Blackie Academic and Professional, Chapman and Hall, London (1993)
  3. Bouillon N, Pascault JP, Tighzert L, J. Appl. Polym. Sci., 38, 2103 (1989) 
  4. Meyer F, Sanz G, Eceiza A, Mondragon I, Mijovic J, Polymer, 36(7), 1407 (1995) 
  5. Keenan JD, Seferis JC, Quinlivan JT, J. Appl. Polym. Sci., 24, 2375 (1979) 
  6. Guerrero P, Delacaba K, Valea A, Corcuera MA, Mondragon I, Polymer, 37(11), 2195 (1996) 
  7. Hassel RL, Ind. Res. Dev., 20, 160 (1978)
  8. Fisher RF, J. Polym. Sci., 44, 155 (1960) 
  9. Tanaka Y, Kakiuchi H, J. Polym. Sci. A: Polym. Chem., 2, 3405 (1964)
  10. Matejka L, Lovy J, Pokorny S, Bouchal K, Desek K, J. Polym. Sci. A: Polym. Chem., 21, 2873 (1983)
  11. Park WH, Lee JK, Kwon KJ, Polym. J., 28(5), 407 (1996) 
  12. Park WH, Lee JK, J. Appl. Polym. Sci., 67(6), 1101 (1998) 
  13. Kim DS, Lee JK, Korean J. Mater. Res., 7(12), 1089 (1997)
  14. Lee JK, Park WH, Korean J. Mater. Res., 6(5), 494 (1996)
  15. Takahama T, Geil PH, J. Polym. Sci. C: Polym. Lett., 20, 453 (1982)
  16. Heise MS, Martin GC, J. Polym. Sci. C: Polym. Lett., 26, 153 (1988)
  17. Ito M, Hata H, Kamagata K, J. Appl. Polym. Sci., 33, 1843 (1987) 
  18. Jisova V, J. Appl. Polym. Sci., 34, 2547 (1987) 
  19. Jones JR, Poncipe C, Barton JM, Wright WW, Polymer, 28, 1358 (1987) 
  20. Schroeder JA, Madsen PA, Foister RT, Polymer, 28, 929 (1987) 
  21. Prime RB, "Thermal Characterization of Polymeric Materials," ed. by E.A. Turi, Academic Press, New York, NY (1981)
  22. Tobolsky AV, "Properties and Structure of Polymers," Wiley, New York, NY (1960)
  23. Vallely AS, Gillham JK, J. Appl. Polym. Sci., 64(1), 39 (1997)