화학공학소재연구정보센터
Polymer(Korea), Vol.23, No.5, 662-672, September, 1999
용액의 농도변화에 따른 친수성-소수성 분체의 표면 특성 연구 - 계면활성제 SDS, CTABr 수용액에 대한 분체 PMMA, PVC, PVdF와 Aluminum의 접촉각 -
A Study on the Surface Characteristics of Hydrophobic-Hydrophilic Powders with Concetration Change of Solutions - Contact Angles of the Powder Pmma, PVC PVdF and Aluminum on the Surfactant SDS, CTMBr Solutions-
E-mail:
초록
분체 PMMA, PVC, PVdF와 aluminum에 대해 유기액체, 몰분율에 따른 메탄올, 에탄올 수용액, 농도에 따른 음이온 계면활성제 SDS와 양이온 계면활성제 CTABrtndyddor과의 접촉각을 Washburnt식을 기본으로 한 wicking법을 사용하여 측정하였다. 이로부터, 접촉각은 고체와 액체의 화학적 구조와 물리적 성질에 따라 다른 값을 가짐을 알 수 있었다. 측정된 접촉각으로부터 고체의 표면 특서을 결정짓는 임계표면장력을 Zisman plot으로부터 예측하였으며, 이로부터 고체의 표면 특성은 계면활성제의 첨가에 의해 상당한 변화가 야기됨을 알 수 있었다. 계면활성제 SDS 수용액을 흡착시킨 분체 PMMA/SDS와 PVC/SDS의 SDS 농도에 따른 표면자유에너지와 그 성분 값을 결정하였는데, 그 결과 고체 표면에 계면활성제 분자의 흡착으로 인해 소수성 고체 표면에 친수성의 수산기가 흡착됨으로써 분산 성분이 감소하는 반면, 극성 성분은 급격히 증가함을 알 수 있었다.
Contact angles of polymethyl methacrylate(PMMA), polyvinyl chlorde(PVC), polyvinylidene fluorde(PVdF), and auminum powders were measured by wicking method based on Washburn equation for the organic liquids, methanol and ethanol. sodium dodecyl sulfate(SDS), and cetyltrimethylammonium bromide(CTABr)aqueous solutions. It was observed that the values of contact angle became different depending on chemical structures and physical characteristics of liquids and solids. The critical surface tensions were estimated by Zisman plot using the values of experimentally measured contact angles. From the results, it was clearly observed that the surface characteristics considerably changed with adding surfactants. The surface free energy and its components (dispersive, polar) for PMMA and PVC, of which surfaces were adsorbed from SDS aqueous solution with several different concentrations, were also determined. The dispersive component decreased as the nondispersive component increased significantly, which was caused by the increase of the amount of the adsorption of hydrophilic hydroxyl groups on the hydrophobic solid surface.
  1. Pyter RA, Zografi G, Mukerjee P, J. Colloid Interface Sci., 89, 144 (1982) 
  2. Janczuk B, Gonzalezmartin ML, Bruque JM, J. Colloid Interface Sci., 170(2), 383 (1995) 
  3. Luner PE, Babu SR, Mehta SC, Int. J. Pharm., 128, 29 (1996) 
  4. Rho SB, Lim MA, J. Korean Ind. Eng. Chem., 9(2), 177 (1998)
  5. Adamson AW, "Physical Chemistry of Surface," Wiley, NY (1982)
  6. Washburn EW, Phys. Rev., 17, 273 (1921) 
  7. Wu S, "Polymer Interface and Adhesion," p. 148, Dekker, NY (1982)
  8. "K-12 User manual," ch. 7, KRUSS GmbH, Hamburg (1993)
  9. van Oss CJ, "Interfacial Forces in Aqueous Media," Dekker, NY (1994)
  10. Rho SB, Lim MA, HWAHAK KONGHAK, 36(2), 215 (1998)
  11. Elworthy PH, Mysels KJ, J. Colloid Interface Sci., 21, 331 (1966) 
  12. Goddard ED, Ananthapadmanabhan KP, "Interaction of Surfactants with Polymer and Proteins," CRC Press, US (1993)
  13. "Introduction Manual for Contact Angle Meter Model CM-MICRO," p. 2-9, Tantec Inc., Schaumburg (1996)
  14. Bruil HG, van Aartsen JJ, Colloid Polym. Sci., 252, 32 (1974) 
  15. Wu W, Giese RF, Vanoss CJ, Powder Technol., 89(2), 129 (1996) 
  16. Gau CS, Zografi G, J. Colloid Interface Sci., 140, 1 (1990) 
  17. Imoto M, "For Understanding the Surface Tension," p. 163, Kobunshi Kankokai, Kyoto (1993)
  18. Matis KA, "Flotation Science and Engineering," Dekker, NY (1995)
  19. van Oss CJ, Good RJ, J. Dispersion Sci. Technol., 9, 355 (1988)
  20. van Oss CJ, Good RJ, J. Dispersion Sci. Technol., 11, 75 (1990)
  21. Janczuk B, Gonzalez-Martin ML, Bruque JM, Dorado-Calasanz C, Del Pozo JM, J. Colloid Interface Sci., 176, 1 (1990) 
  22. Janczuk B, Bruque JM, Conzalez-Martin ML, Romain-Gialan E, Colloids Surf., 93, 103 (1995)