Macromolecular Research, Vol.24, No.10, 868-873, October, 2016
Quantifying L-Ascorbic Acid-Driven Inhibitory Effect on Amyloid Fibrillation
E-mail:,
Ascorbic acid, which is widely used as a therapeutic agent for various disorders (e.g. chronic diseases and cancers), has potential therapeutic roles for neurodegenerative disease such as Huntington’s, Parkinson’s and Alzheimer’s diseases. The ability to impede amyloid fibril formation has a great demand on developing clinical medicine with respect to successfully preventing neurodegenerative diseases. Here, we report that L-ascorbic acid inhibits β-lactoglobulin amyloid formation in vitro. For quantitative characterization of the inhibitory effect of L-ascorbic acid on fibrillation, we performed high-resolution atomic force microscopy and thioflavin T fluorescence assay. Fourier transform infrared spectra indicated secondary structure differences of fibrils formed with and without ascorbic acid. These results suggest great potential of ascorbic acid for use in the prevention or treatment of amyloidogenic diseases.
Keywords:L-ascorbic acid;β-lactoglobulin amyloid fibril;inhibition effect;thioflavin T fluorescence assay;atomic force microscopy
- Bendich A, Machlin LJ, Scandurra O, Burton GW, Wayner DD, Adv. Free Radic. Biol. Med., 2, 419 (1986)
- Cameron E, Pauling L, Leibovitz B, Cancer Res., 39, 663 (1979)
- Dixit S, Bernardo A, Walker JM, Kennard JA, Kim GY, Kessler ES, Harrison FE, ACS Chem. Neurosci., 6, 570 (2015)
- Jacob RA, Sotoudeh G, Nutr. Clin. Care., 5, 66 (2002)
- Ma Y, Chapman J, Levine M, Polireddy K, Drisko J, Chen Q, Sci. Transl. Med., 6, 222 (2014)
- Ohno S, Ohno Y, Suzuki N, Soma GI, Inoue M, Anticancer Res., 29, 809 (2009)
- Padayatty SJ, Katz A, Wang Y, Eck P, Kwon O, Lee JH, Chen S, Corpe C, Dutta A, Dutta SK, Levine M, J. Am. Coll. Nutr., 22, 18 (2003)
- Yim H, Jo EA, Na K, Macromol. Res., 18(9), 913 (2010)
- Lien YH, Wu JH, Liao JW, Wu TM, Macromol. Res., 21(5), 511 (2013)
- Kook SY, Lee KM, Kim Y, Cha MY, Kang S, Baik SH, Lee H, Jung IM, Cell Death Dis, 5, e1083 (2014)
- Lee G, Lee W, Lee H, Lee SW, Yoon DS, Eom K, Kwon T, Appl. Phys. Lett., 101, 043703 (2012)
- Adamcik J, Jung JM, Flakowski J, De Los Rios P, Dietler G, Mezzenga R, Nat. Nanotechnol., 5(6), 423 (2010)
- Lee G, Lee W, Lee H, Lee CY, Eom K, Kwon T, Sci. Rep., 5, 16220 (2015)
- Loveday SM, Wang XL, Rao MA, Anema SG, Singh H, Food Hydrocolloids, 27, 242 (2012)
- Dave AC, Loveday SM, Anema SG, Loo TS, Norris GE, Jameson GB, Singh G, J. Agric. Food Chem., 6, 7817 (2013)
- Khurana R, Coleman C, Ionescu-Zanetti C, Carter SA, Krishna V, Grover RK, Roy R, Singh S, J. Struct. Biol., 151(3), 229 (2005)
- Lee W, Jung H, Son M, Lee H, Kwak TJ, Lee G, Kim CH, Lee SW, Yoon DS, RSC Adv., 4, 56561 (2014)
- Reinke AA, Abulwerdi GA, Gestwicki JE, Chembiochem, 11, 1889 (2010)
- Mirhashemi SM, Aarabi MH, Sci. Res. Essays, 6, 5507 (2011)
- Zandomeneghi G, Krebs MRH, Mccammon MG, Fandrich M, Protein Sci., 13, 3314 (2004)
- Men J, Wang R, Hu X, Zhao H, Wei H, Hu C, Gao B, Macromol. Res., 24(2), 114 (2016)
- Ali S, Khatri Z, Oh KW, Kim IS, Kim SH, Macromol. Res., 22(9), 971 (2014)
- Yoon H, Kim EY, Kim H, Park CH, Joo CK, Khang G, Macromol. Res., 22(3), 297 (2014)
- Krebs MR, Devlin GL, Donald AM, Biophys. J., 96, 5013 (2009)
- Hu X, Kaplan D, Cebe P, Macromolecules, 39(18), 6161 (2006)
- Mouro C, Jung C, Bondon A, Simonneaux G, Biochemistry, 36, 8125 (1997)
- Krimm S, Biopolymers, 22, 217 (1983)
- Kerth A, Erbe A, Dathe M, Blume A, Biophys. J., 86, 3750 (2004)
- Naskar J, Drew MGB, Deb I, Das S, Banerjee A, Org. Lett., 10, 2625 (2008)
- Yuan JP, Chen F, J. Agric. Food Chem., 46, 5078 (1998)
- Ma Q, Wei G, Yang X, Nanoscale, 5, 10397 (2013)
- Loveday SM, Wang XL, Rao MA, Anema SG, Creamer LK, Singh H, Int. Dairy J., 20, 571 (2010)
- Lee H, Lee W, Lee JH, Yoon DS, J. Nanomater., 2016, 21 (2016)
- Porat Y, Abramowitz A, Gazit E, Chem. Biol. Drug Des., 67, 27 (2006)