화학공학소재연구정보센터
Journal of Physical Chemistry A, Vol.120, No.27, 4951-4960, 2016
MP2 Study of Physisorption of Molecular Hydrogen onto Defective Nanotubes: Cooperative Effect in Stone-Wales Defects
We use large-scale MP2 calculations to investigate the physisorption of molecular hydrogen on (9,0) defective carbon nanotubes (CNTs) of C72H18. These large (supra)molecular systems are typically studied using conventional DFT methods, which do not describe well the van der Waals interactions responsible for this process. Here we use CCSD(T)-calibrated MP2 calculations to estimate binding energies by considering four defective structures (hydrogenated divacancy, octagon-pentagon, and two Stone-Wales defects). The largest physisorption energies for the nondefective CNT are for configurations in which H-2 points toward the center of one ring. The computed interaction energies for defect-free CNT are in the range 5.7 to 5.9 kJ/mol, in good agreement with the experimental value of 5.98 kJ/mol. The defects introduced in the (9,0)-CNT increase the surface area of the nanotube, such that the largest surface in found in the 55-77 Stone-Wales defective CNT that furthermore is the most aromatic. Only that defect enlarges the physisorption binding energy, which can become >25% larger. Moreover, a cooperative effect in the adsorption of H-2 not appearing in the regular structure is found.