화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.138, No.31, 9935-9940, 2016
Pentanidium- and Bisguanidinium-Catalyzed Enantioselective Alkylations Using Silylamide as Bronsted Probase
Most asymmetric phase transfer reactions are Bronsted base reactions, and the inorganic bases used greatly influenced the profile of the reaction. Alkoxide salts are able to activate substrates with high pKa values, but background reactions are often unavoidable. On the other hand, carbonate and phosphate salts are milder, but their low basicity limits the scope of their reactions. This presents a difficult situation whereby fragile substrates such as lactone will be hydrolyzed by a stronger base but will not be activated with a weaker one. Thus, a Bronsted probase strategy is devised, in which a strong base can be generated in situ from silylamide (probase) through the use of fluoride. In this approach, the strong base produced will be transient and not be in excess, thus reducing background and side reactions. We demonstrate this strategy using pentanidinium and bisguanidinium as catalysts; highly enantioselective phase transfer alkylation of several types of substrates including dihydrocoumarin (lactone) can be achieved. We found that the probase also acts as a silylation reagent, generating silyl enol ether or silyl ketene acetal, which are key intermediates in the reaction. We further propose that hypervalent silicates form ion-pairs with pentanidinium and bisguanidinium as intermediates in the reaction, and it is through these ion-pairs that the selective enantiofacial approach of the electrophile is determined.