화학공학소재연구정보센터
Langmuir, Vol.32, No.30, 7621-7629, 2016
Discrimination of Proteins Using an Array of Surfactant-Stabilized Gold Nanoparticles
Protein analysis is a fundamental aspect of biochemical research. Gold nanoparticles are an emerging platform for various biological applications given their high surface area, biocompatibility, and unique optical properties. The colorimetric properties of gold nanoparticles make them ideal for point-of-care diagnostics. Different aspects of gold nanoparticle-protein interactions have been investigated to predict the effect of protein adsorption on colloidal stability, but the role of surfactants is often overlooked, despite their potential to alter both protein and nanoparticle properties. Herein we present a method by which gold nanoparticles can be prepared in various surfactants and used for array-based quantification and identification of proteins. The exchange of surfactant not only changed the zeta potential of those gold nanoparticles but also drastically altered their aggregation response to five different proteins (bovine serum albumin, human serum albumin, immunoglobulin G, lysozyme, and hemoglobin) in a concentration-dependent manner. Finally, we demonstrate that varying surfactant concentration can be used to control assay sensitivity.