Polymer(Korea), Vol.24, No.4, 505-512, July, 2000
초임계 용매내에서 생분해성 Poly(lactide-co-glycolide)공중합체의 혼합물 밀도 측정
Mixture Density Measurement of Biodegradable Poly(lactide-co-glycolide) Copolymer in Supercritical Solvents
초록
본 연구는 초임계 용매인 CO2, CHF3 및 CHCIF2내에서 poly(lactic-co-glycolide)[PLGA] 용액과의 혼합물 밀도를 측정하였다. 초임계 용매와 poly(lactic acid) [PLA] 및 PLGA간의 혼합물 밀도는 온도 27∼100℃와 압력 3000bar까지 실험하여 나타내었다. [PLGAx의 X는 0∼50mol% 범위에 대한 glycolide의 몰농도이다]. PLA-CO2 혼합물은 약 1430 bar 이내에서, PLA-CHF3계는 700 bar이하에서, PLA-CHCIF3계는 100bar이하에서 각각 용해되었다 이때 온도범위는 27∼93℃이며, 혼합물 밀도는 1.084∼1.334g/cm3 범위에서 나타났다. PLGA15 공중합체-CO2 혼합물은 약 1900 bar 이하에서 용해되었으며, 이때 혼합물 밀도는 37∼92℃에서 1.158∼1.247g/cm3으로 나타났다. PLGA25공중합체-CO2계는 약 2390 bar이하에서, PLGA25-CIF3계에 대해서는 1470 bar이하에서, PLGA25-CIF3계에 대해서는 118 bar 이하에서 각각 용해되었으며, 혼합물 밀도는 29∼81℃사이에서 1.154∼1.535g/cm3로 나타났다. PLGA50-CO2계는 240℃, 3000 bar내에서는 용해되지 않았으며, 반면 PLGA50과 CHCIF2계는 glycolide농도가 증가함에 따라 혼합물 밀도가 증가하였다.
The mixture density dara for poly(lactide-co-glycolide) [PLGA] with supercritical CO2. CHF3 and CHCIF2 were obtained in the temperature range of 27 to 100℃ and at pressures as high as 3000bar(PLGAx, where the molar concentration of glycolide in the backbone, x, range from 0 to 50mol%). The PLA-CO2, PLA-CHF 3, and PLA-CHClF 2 systems dissolve in the pressure less than 1430, below 700, and below 100bar, respectively. The mixture density shows from 1.084 to 1.334g/cm3 at temperatures from 27 to 93℃. The PLGA15-CO2 mixture dissolves at pressures of below 1900 bar and the mixture density is in the range of 1.158 to 1.247g/cm3 at temperatures between 37 and 92℃. The solubilities of the PLGA25 for CO2, CHF3, and CHCIF2 are shown to pressure as high as 2390,1470, and 118bar, respectively, and the mixture density exhibits from 1.154 to 1.535g/cm3 at temperatures from 29 to 81 ℃. The PLGA50-CO2 system does not dissolve at 240℃ and 3000bar while the PLGA50-CHCIF2 does easily at 50℃ and 100 bar. The mixture density for the PLGA-CHCIF2 system increases even at low pressures as the glycolide molar concentration increases.
- Daniels AU, Chang MKO, Andriano KP, Heller J, J. Appl. Biomater., 1, 57 (1990)
- Middleton JC, Tipton AJ, "Medical Plastics and Biomaterlas Magazine," March/April, 1998 (1998)
- Hile DD, Pishko MV, Macromol. Rapid Commun., 20, 511 (1999)
- Mandel FS, "Processing of Biosorable Polymers via Supercritical Fluid," Ferro Corporation, USA, EEC, Japan, 1999 (1999)
- Kiran E, Gokmenoglu Z, J. Appl. Polym. Sci., 58(12), 2307 (1995)
- Yeo SD, Kiran E, J. Supercrit. Fluids, 15(3), 261 (1999)
- Byun HS, Kim CB, J. Korean Ind. Eng. Chem., 9(3), 424 (1998)
- Byun HS, Jeon NS, Fluid Phase Equilib., 167(1), 113 (2000)
- Byun HS, Todd TP, McHugh MA, J. Chem. Eng. Data, accepted (2000)
- Meyer CW, Morrison G, J. Chem. Eng. Data, 36, 409 (1991)
- Miller KJ, Savchik JA, J. Am. Chem. Soc., 101, 7206 (1979)
- Christensen JJ, Post ME, McFall TA, Izatt RM, Thermochim. Acta, 50, 73 (1981)
- Christensen JJ, Christensen SP, Schofield RS, Faux PW, Harding PR, Izatt RM, Thermochim. Acta, 67, 315 (1983)
- Izatt RM, Schofield RS, Faux PW, Harding PR, Christensen SP, Christensen JJ, Thermochim. Acta, 68, 223 (1983)
- Prausnitz JM, Lichtenthaler RN, Azevedo EG, "Molecular Thermodynamics of Fluid Phase Equilibria," 2nd Ed., Prentice-Hall, Englewood Cliffs, NJ, 1986 (1986)
- Noles JR, Zollweg JA, J. Chem. Eng. Data, 37, 306 (1992)
- Demiriz AM, Kohlen R, Koopmann C, Moeller D, Sauermann P, Iglesias-Silva GA, Kohler F, Fluid Phase Equilib., 85, 313 (1993)
- Meilchen MA, Hasch BM, McHugh MA, Macromolecules, 24, 4874 (1991)
- Meilchen MA, Hasch BM, Lee SH, McHugh MA, Polymer, 33, 1922 (1992)
- Haschets CW, Blackwood TA, Shine AD, Polym. Prepr. Am. Chem. Soc. Division Polym. Chem., 34, 602 (1993)
- Haschetz CW, Shine AD, Macromolecules, 26, 5052 (1993)
- Pratt JA, Lee SH, McHugh MA, J. Appl. Polym. Sci., 49, 953 (1993)
- Hasch BM, Meilchen MA, Lee SH, McHugh MA, J. Polym. Sci. B-Polym. Phys., 31, 429 (1993)
- McHugh MA, Krukonis VJ, "Supercritical Fluid Extraction: Principles and Practice," 2nd Ed., Butterworth, Stoneham, MA, 1994 (1994)