Solar Energy, Vol.137, 364-370, 2016
Towards nanostructured perovskite solar cells with enhanced efficiency: Coupled optical and electrical modeling
Third generation photovoltaic technologies based on perovskites have demonstrated an exceptional progress in solar energy conversion since their first use in 2009. Herein, we investigated the effect of using light trapping nanostructures on the absorption, carrier collection, and overall efficiency of perovskite (CH3NH3PbI3) solar cells using three dimensional (3D) finite element method (FEM) technique. A combined optical-electrical model was constructed to full characterize the proposed devices. Upon the use of nanotubular architecture, the optimized active area absorption enhanced by 6% and the total generation rate increased by 7% compared to the planar architecture. Under one sunlight illumination (AM1.5G), with normal incident angle, the solar cells containing nanostructured light trapping architecture showed a drastic enhancement in the short circuit current (J(sc)), the quantum efficiency (EQE), and the overall efficiency compared to the planar film-based solar cell. The obtained enhancements would open a new route for integrating light trapping nanostructures in CH3NH3PbI3 perovskite-based solar cells for better efficiency. (C) 2016 Elsevier Ltd. All rights reserved.