Korean Journal of Chemical Engineering, Vol.33, No.11, 3128-3133, November, 2016
Thermogravimetric characteristics of α-cellulose and decomposition kinetics in a micro-tubing reactor
E-mail:,
The pyrolysis characteristics and kinetics of α-cellulose were investigated using thermogravimetric analyzer (TGA) and micro tubing reactor, respectively. Most of the α-cellulose decomposed between 250 and 400 ℃ at heating rate of 5-20 ℃/min. The apparent activation energy was observed in the range of 263.02 kJ mol-1 to 306.21 kJ mol-1 at the conversion of 10-80%. The kinetic parameters were determined by nonlinear least-squares regression of the experimental data, assuming first-order kinetics. It was found from the kinetic rate constants that the predominant reaction pathway was A(α-cellulose) to B(bio-oil) rather than A(α-cellulose) to C(gas; C1-C4) and/or to B(bio-oil) to C(gas; C1-C4) at temperatures of 340-360 ℃.
- Jefferson M, Renew. Energy, 31(5), 571 (2006)
- Nigam PS, Singh A, Prog. Energy Combust. Sci., 37(1), 52 (2011)
- Park SH, Cho HJ, Ryu C, Park YK, J. Ind. Eng. Chem., 36, 314 (2016)
- Demirba A, Fuel, 80, 1885 (2001)
- Manya JJ, Velo E, Puigjaner L, Ind. Eng. Chem. Res., 42(3), 434 (2003)
- Parthasarathy P, Narayanan S, Korean J. Chem. Eng., 32(11), 2236 (2015)
- Rao TR, Sharma A, Energy, 23(11), 973 (1998)
- Raveendran K, Ganesh A, Khilar KC, Fuel, 75, 987 (1996)
- Yang HP, Yan R, Chen HP, Lee DH, Zheng CG, Fuel, 86(12-13), 1781 (2007)
- Zhu G, Zhu X, Xiao Z, Yi F, J. Anal. Appl. Pyrolysis, 94, 126 (2012)
- Deguchi S, Tsujii K, Horikoshi K, Chem. Commun., 31, 3293 (2006)
- Kim SH, Lee CM, Kafle K, Korean J. Chem. Eng., 30(12), 2127 (2013)
- Wang S, Du Y, Zhang W, Cheng X, Wang J, Korean J. Chem. Eng., 31(10), 1786 (2014)
- Patwardhan PR, Satrio JA, Brown RC, Shanks BH, J. Anal. Appl. Pyrolysis, 86, 323 (2009)
- Antal MJ, Varhegyi G, Jakab E, Ind. Eng. Chem. Res., 37(4), 1267 (1998)
- Antal MJ, Varhegyi G, Ind. Eng. Chem. Res., 34(3), 703 (1995)
- Varhegyi G, Jakab E, Antal MJ, Energy Fuels, 8(6), 1345 (1994)
- Bradbury AG, Sakai Y, Shafizadeh F, J. Anal. Appl. Pyrolysis, 23, 3271 (1979)
- Agrawal RK, Can. J. Chem. Eng., 66, 413 (1988)
- Di Blasi C, Prog. Energy Combust. Sci., 34(1), 47 (2008)
- Chayaporn S, Sungsuk P, Sunphorka S, Kuchonthara P, Piumsomboon P, Chalermsinsuwan B, Korean J. Chem. Eng., 32(6), 1081 (2015)
- Kim SS, Kim J, Park YH, Park YK, Bioresour. Technol., 101(24), 9797 (2010)
- Kim SS, Kim SH, Fuel, 79, 1943 (2000)
- Park YH, Kim J, Kim SS, Park YK, Bioresour. Technol., 100(1), 400 (2009)
- Othman MR, Park YH, Ngo TA, Kim SS, Kim J, Lee KS, Korean J. Chem. Eng., 27(1), 163 (2010)
- Choi GH, Kim SS, Kim J, Joo DS, Lee J, Appl. Chem. Eng., 22(5), 508 (2011)
- Ouajai S, Shanks R, Polym. Degrad. Stabil., 89, 327 (2005)
- Caballero J, Conesa J, Font R, Marcilla A, J. Anal. Appl. Pyrolysis, 42, 159 (1997)
- Kim SS, Agblevor FA, Waste Manage., 27, 135 (2007)
- Maiti S, Purakayastha S, Ghosh B, Fuel, 86(10-11), 1513 (2007)
- Soysa R, Choi YS, Choi SK, Kim SJ, Han SY, Korean J. Chem. Eng., 33(2), 603 (2016)
- Vamvuka D, Kakaras E, Kastanaki E, Grammelis P, Fuel, 82(15-17), 1949 (2003)
- Wang G, Li W, Li BQ, Chen HK, Fuel, 87(4-5), 552 (2008)
- Park HJ, Park YK, Dong JI, Kim JS, Jeon JK, Kim SS, Kim J, Song B, Park J, Lee KJ, Fuel Process. Technol., 90(2), 186 (2009)
- Lee EH, Park R, Kim H, Park SH, Jung SC, Jeon JK, Kim SC, Park YK, J. Ind. Eng. Chem., In Press (2016)
- Le TA, Ly HV, Kim J, Kim SS, Choi JH, Woo HC, Othman MR, Chem. Eng. J., 250, 157 (2014)
- Ko JH, Park RS, Jeon JK, Kim DH, Jung SC, Kim SC, Park YK, J. Ind. Eng. Chem., 32, 109 (2015)
- Ross AB, Jones JM, Kubacki ML, Bridgeman T, Bioresour. Technol., 99(14), 6494 (2008)