화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.33, No.11, 3128-3133, November, 2016
Thermogravimetric characteristics of α-cellulose and decomposition kinetics in a micro-tubing reactor
E-mail:,
The pyrolysis characteristics and kinetics of α-cellulose were investigated using thermogravimetric analyzer (TGA) and micro tubing reactor, respectively. Most of the α-cellulose decomposed between 250 and 400 ℃ at heating rate of 5-20 ℃/min. The apparent activation energy was observed in the range of 263.02 kJ mol-1 to 306.21 kJ mol-1 at the conversion of 10-80%. The kinetic parameters were determined by nonlinear least-squares regression of the experimental data, assuming first-order kinetics. It was found from the kinetic rate constants that the predominant reaction pathway was A(α-cellulose) to B(bio-oil) rather than A(α-cellulose) to C(gas; C1-C4) and/or to B(bio-oil) to C(gas; C1-C4) at temperatures of 340-360 ℃.
  1. Jefferson M, Renew. Energy, 31(5), 571 (2006)
  2. Nigam PS, Singh A, Prog. Energy Combust. Sci., 37(1), 52 (2011)
  3. Park SH, Cho HJ, Ryu C, Park YK, J. Ind. Eng. Chem., 36, 314 (2016)
  4. Demirba A, Fuel, 80, 1885 (2001)
  5. Manya JJ, Velo E, Puigjaner L, Ind. Eng. Chem. Res., 42(3), 434 (2003)
  6. Parthasarathy P, Narayanan S, Korean J. Chem. Eng., 32(11), 2236 (2015)
  7. Rao TR, Sharma A, Energy, 23(11), 973 (1998)
  8. Raveendran K, Ganesh A, Khilar KC, Fuel, 75, 987 (1996)
  9. Yang HP, Yan R, Chen HP, Lee DH, Zheng CG, Fuel, 86(12-13), 1781 (2007)
  10. Zhu G, Zhu X, Xiao Z, Yi F, J. Anal. Appl. Pyrolysis, 94, 126 (2012)
  11. Deguchi S, Tsujii K, Horikoshi K, Chem. Commun., 31, 3293 (2006)
  12. Kim SH, Lee CM, Kafle K, Korean J. Chem. Eng., 30(12), 2127 (2013)
  13. Wang S, Du Y, Zhang W, Cheng X, Wang J, Korean J. Chem. Eng., 31(10), 1786 (2014)
  14. Patwardhan PR, Satrio JA, Brown RC, Shanks BH, J. Anal. Appl. Pyrolysis, 86, 323 (2009)
  15. Antal MJ, Varhegyi G, Jakab E, Ind. Eng. Chem. Res., 37(4), 1267 (1998)
  16. Antal MJ, Varhegyi G, Ind. Eng. Chem. Res., 34(3), 703 (1995)
  17. Varhegyi G, Jakab E, Antal MJ, Energy Fuels, 8(6), 1345 (1994)
  18. Bradbury AG, Sakai Y, Shafizadeh F, J. Anal. Appl. Pyrolysis, 23, 3271 (1979)
  19. Agrawal RK, Can. J. Chem. Eng., 66, 413 (1988)
  20. Di Blasi C, Prog. Energy Combust. Sci., 34(1), 47 (2008)
  21. Chayaporn S, Sungsuk P, Sunphorka S, Kuchonthara P, Piumsomboon P, Chalermsinsuwan B, Korean J. Chem. Eng., 32(6), 1081 (2015)
  22. Kim SS, Kim J, Park YH, Park YK, Bioresour. Technol., 101(24), 9797 (2010)
  23. Kim SS, Kim SH, Fuel, 79, 1943 (2000)
  24. Park YH, Kim J, Kim SS, Park YK, Bioresour. Technol., 100(1), 400 (2009)
  25. Othman MR, Park YH, Ngo TA, Kim SS, Kim J, Lee KS, Korean J. Chem. Eng., 27(1), 163 (2010)
  26. Choi GH, Kim SS, Kim J, Joo DS, Lee J, Appl. Chem. Eng., 22(5), 508 (2011)
  27. Ouajai S, Shanks R, Polym. Degrad. Stabil., 89, 327 (2005)
  28. Caballero J, Conesa J, Font R, Marcilla A, J. Anal. Appl. Pyrolysis, 42, 159 (1997)
  29. Kim SS, Agblevor FA, Waste Manage., 27, 135 (2007)
  30. Maiti S, Purakayastha S, Ghosh B, Fuel, 86(10-11), 1513 (2007)
  31. Soysa R, Choi YS, Choi SK, Kim SJ, Han SY, Korean J. Chem. Eng., 33(2), 603 (2016)
  32. Vamvuka D, Kakaras E, Kastanaki E, Grammelis P, Fuel, 82(15-17), 1949 (2003)
  33. Wang G, Li W, Li BQ, Chen HK, Fuel, 87(4-5), 552 (2008)
  34. Park HJ, Park YK, Dong JI, Kim JS, Jeon JK, Kim SS, Kim J, Song B, Park J, Lee KJ, Fuel Process. Technol., 90(2), 186 (2009)
  35. Lee EH, Park R, Kim H, Park SH, Jung SC, Jeon JK, Kim SC, Park YK, J. Ind. Eng. Chem., In Press (2016)
  36. Le TA, Ly HV, Kim J, Kim SS, Choi JH, Woo HC, Othman MR, Chem. Eng. J., 250, 157 (2014)
  37. Ko JH, Park RS, Jeon JK, Kim DH, Jung SC, Kim SC, Park YK, J. Ind. Eng. Chem., 32, 109 (2015)
  38. Ross AB, Jones JM, Kubacki ML, Bridgeman T, Bioresour. Technol., 99(14), 6494 (2008)