화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.33, No.11, 3141-3148, November, 2016
Efficient removal of methylene blue in aqueous solution by freeze-dried calcium alginate beads
E-mail:,
Novel porous calcium alginate beads were prepared via crosslinking of calcium followed by freeze drying for investigating the adsorption performance for methylene blue. These beads possessed reduced shrinkage, highly porous lamellar structure and high specific surface area, and exhibited enhanced adsorption capacity and much faster adsorption rate compared to the non-porous beads obtained with conventional oven drying method. Methylene blue adsorption capacity increased with increasing of initial concentration and pH, while decreased with increasing of temperature. The adsorption process fitted well with the pseudo-second-order kinetic model and the Langmuir isotherm. The maximum adsorption capacity was 961.5mg g-1 at 298.15 K. After eight successive adsorption-desorption cycles, the adsorption capacity had negligible decrease. Owing to the high adsorption capability, rapid adsorption rate, easy recovery and reusability, the freeze-dried beads imply a prospective, biodegradable and attractive adsorbent for removing contaminants from wastewater.
  1. El Qada EN, Allen SJ, Walker GM, J. Chem. Eng., 124, 103 (2006)
  2. Alkaim AF, Sadik Z, Mahdi DK, Alshrefi SM, Al-Sammarraie AM, Alamgir FM, Singh PM, Aljeboree AM, Korean J. Chem. Eng., 32(12), 2456 (2015)
  3. Shirmardi M, Mahvi AH, Hashemzadeh B, Naeimabadi A, Hassani G, Niri MV, Korean J. Chem. Eng., 30(8), 1603 (2013)
  4. He X, Male KB, Nesterenko PN, Brabazon D, Paull B, Luong JH, ACS Appl. Mater. Interfaces, 5, 8796 (2013)
  5. Hameed BH, Ahmad AA, J. Hazard. Mater., 164(2-3), 870 (2009)
  6. Arabi S, Sohrabi MR, Water Sci. Technol., 70, 24 (2014)
  7. Zhai R, Zhang B, Wan YZ, Li CC, Wang JT, Liu JD, Chem. Eng. J., 214, 304 (2013)
  8. Liu L, Wan YZ, Xie YD, Zhai R, Zhang B, Liu JD, Chem. Eng. J., 187, 210 (2012)
  9. Karadag D, Akgul E, Tok S, Erturk F, Kaya MA, Turan M, J. Chem. Eng. Data, 52(6), 2436 (2007)
  10. Blackburn RS, Environ. Sci. Technol., 38, 4905 (2004)
  11. Serpa AL, Schneider IAH, Rubio J, Environ. Sci. Technol., 39, 885 (2005)
  12. Fu F, Gao ZW, Gao LX, Li DS, Ind. Eng. Chem. Res., 50(16), 9712 (2011)
  13. Ahmaruzzaman M, Energy Fuels, 23, 1494 (2009)
  14. Ho YS, Chiu WT, Wang CC, Bioresour. Technol., 96, 1285 (2005)
  15. Deze EG, Papageorgiou SK, Favvas EP, Katsaros FK, Chem. Eng. J., 209, 537 (2012)
  16. Lagoa R, Rodrigues JF, Biochem. Eng. J., 46, 320 (2009)
  17. Eddleston MD, Patel B, Day GM, Jones W, Cryst. Growth Des., 13, 4599 (2013)
  18. Mukai SR, Nishihara H, Shichi S, Tamon H, Chem. Mater., 16, 4987 (2004)
  19. Okada T, Kato T, Yamaguchi T, Sakai T, Mishima S, Ind. Eng. Chem. Res., 52(34), 12018 (2013)
  20. Kosuge K, Kubo S, Kikukawa N, Takemori M, Langmuir, 23(6), 3095 (2007)
  21. Kruk M, Jaroniec M, Sayari A, J. Phys. Chem. B, 101(4), 583 (1997)
  22. Hameed BH, El-Khaiary MI, J. Hazard. Mater., 155(3), 601 (2008)
  23. Ho YS, McKay G, Chem. Eng. J., 70(2), 115 (1998)
  24. Almeida CAP, Debacher NA, Downs AJ, Cottet L, Mello CAD, J. Colloid Interface Sci., 332(1), 46 (2009)
  25. Dogan M, Alkan M, Demirbas O, Ozdemir Y, Ozmetin C, Chem. Eng. J., 124(1-3), 89 (2006)
  26. Gupta VK, Nayak A, Agarwal S, Environ. Eng. Res., 20, 1 (2015)
  27. Santos DCd, Adebayo MA, Pereira SdFP, Prola LDT, Cataluna R, Lima EC, Saucier C, Gally CR, Machado FM, Korean J. Chem. Eng., 31(8), 1470 (2014)
  28. Shi HC, Li WS, Zhong L, Xu CJ, Ind. Eng. Chem. Res., 53(3), 1108 (2014)
  29. Langmuir I, J. Am. Chem. Soc., 38, 2221 (1916)
  30. Hall KR, Eagleton LC, Acrivos A, Vermeulen T, Ind. Eng. Chem. Fundam., 5, 212 (1966)
  31. Liu RC, Zhang B, Mei DD, Zhang HQ, Liu JD, Desalination, 268(1-3), 111 (2011)
  32. Ozcan AS, Erdem B, Ozcan A, J. Colloid Interface Sci., 280(1), 44 (2004)