Journal of Industrial and Engineering Chemistry, Vol.43, 78-85, November, 2016
Role of surface fluorine in improving the electrochemical properties of Fe/MWCNT electrodes
E-mail:
In this study, we investigated the role of the surface fluorine in carbon electrode materials in the energy storage of the corresponding electric double-layer capacitors (EDLCs). And in order to reach this goal, the highly graphitic material multi-walled carbon nanotubes (MWCNTs) were fluorinated to minimize the changes in the textural properties after fluorination and the textural, surface chemical, and electrochemical properties of the resulting MWCNTs were evaluated. The fluorination of the MWCNTs did not change their textural properties because of their highly graphitic properties. The surface fluorine contents of the fluorinated MWCNTs varied depending on the fluorination conditions. The electrochemical properties of the fluorinated MWCNT-based electrodes improved by 31.4-37.7% compared to those of the pristine MWCNTs, depending on the current-density load (0.2-1.5 A/g). The increase in the retained capacitance is due to the surface
fluorination of the MWCNTs. The role of the surface fluorine on the MWCNTs for the improved electrochemical properties of the fluorinated MWCNT-based electrodes is explained using a simple computational study. The surface fluorine induces charge transfer on the surface of the MWCNTs, resulting in a more nucleophilic surface that improves the interaction between the surface of the fluorinated MWCNTs and H3O+.
- Yang HC, Yang JY, Bo Z, Zhang S, Yan JH, Cen KF, J. Power Sources, 324, 309 (2016)
- Zhang HT, Zhang L, Chen J, Su H, Liu FY, Yang WQ, J. Power Sources, 315, 120 (2016)
- Ramirez-Castro C, Schutter C, Passerini S, Balducci A, Electrochim. Acta, 206, 452 (2016)
- Krishnamoorthy K, Kim SJ, J. Ind. Eng. Chem., 32, 39 (2015)
- Perananthan S, Bonso JS, Ferraris JP, Carbon, 106, 20 (2016)
- Cho ES, Bai BC, Im JS, Lee CW, Kim S, J. Ind. Eng. Chem., 35, 341 (2016)
- Lee D, Jung JY, Jung MJ, Lee YS, Chem. Eng. J., 263, 62 (2015)
- Liu Z, Fu D, Liu F, Han G, Liu C, Chang Y, Xiao Y, Li M, Li S, Carbon, 70, 295 (2014)
- Simon P, Gogotsi Y, Acc. Chem. Res., 46, 1094 (2013)
- Park MS, Cho S, Jeong E, Lee YS, J. Ind. Eng. Chem., 23, 27 (2015)
- Zhai D, Li B, Kang F, Du H, Xu C, Microporous Mesoporous Mater., 130, 224 (2010)
- Eswaramoorthi I, Wang S, Dai L, ACS Nano, 6, 5259 (2012)
- Wu ZS, Winter A, Chen L, Sun Y, Turchanin A, Feng XL, Mullen K, Adv. Mater., 24(37), 5130 (2012)
- Yu H, Cho S, Jung MJ, Lee YS, Microporous Mesoporous Mater., 172, 131 (2013)
- Hulicova-Jurcakova D, Seredych M, Lu GQ, Bandosz TJ, Adv. Funct. Mater., 19(3), 438 (2009)
- Hruska Z, Lepot X, J. Fluor. Chem., 105, 87 (2000)
- Lota G, Grzyb B, Machnikowska H, Machnikowski J, Frackowiak E, Chem. Phys. Lett., 404(1-3), 53 (2005)
- Guo HL, Gao QM, J. Power Sources, 186(2), 551 (2009)
- Tsubota T, Takenaka K, Murakami N, Ohno T, J. Power Sources, 196(23), 10455 (2011)
- Hulicova-Jurcakova D, Kodama M, Shiraishi S, Hatori H, Zhu ZH, Lu GQ, Adv. Funct. Mater., 19(11), 1800 (2009)
- Jung MJ, Jeong E, Kim S, Lee SI, Yoo JS, Lee YS, J. Fluor. Chem., 132, 1127 (2011)
- Jeong E, Jung MJ, Lee YS, J. Fluor. Chem., 150, 98 (2013)
- Batmunkh M, Biggs MJ, Shapter JG, Small, 11, 2963 (2015)
- Yang L, Wang S, Zeng Q, Zhang Z, Peng LM, Small, 9, 1225 (2013)
- Batmunkh M, Biggs MJ, Shapter JG, Adv. Sci., 2, 114000 (2015)
- Park MS, Kim KH, Lee YS, J. Ind. Eng. Chem., 37, 22 (2016)
- Cruz-Barba LE, Manolache S, Denes F, Langmuir, 18(24), 9393 (2002)
- Gregg SJ, Sing KSW, Adsorption, Surface Area, and Porosity, second ed., Academic Press, London, 1982.
- Kita Y, Watanabe N, Fujii Y, J. Am. Chem. Soc., 101, 3832 (1979)
- Lagow RJ, Badachhape RB, Wood JL, Margrave JL, J. Chem. Soc.-Dalton Trans., 12, 1268 (1974)
- Parmentier J, Schlienger S, Dubois M, Disa E, Masin F, Centeno TA, Carbon, 50, 5135 (2012)
- Graat PCJ, Somers MAJ, Appl. Surf. Sci., 100-101, 36 (1996)
- Jung MJ, Jeong E, Lee YS, Appl. Surf. Sci., 347, 250 (2015)
- Kreupl F, Graham A, Honlein W, Solid State Technol., 45, 9 (2002)
- Ahmad I, Fay M, Xia Y, Hou X, Kennedy A, Zhu Y, J. Phys. Chem. C, 113, 1286 (2009)
- Liu W, Soneda Y, Kodama M, Yamashita J, Hatori H, Carbon, 45, 2759 (2007)
- Laszlo K, Tombacz E, Josepovits K, Carbon, 39, 1217 (2001)
- Nakajima T, Hashimoto K, Achiha T, Ohzawa Y, Yoshida A, Mazej Z, Zemva B, Lee YS, Endo M, Collect. Czechoslov. Chem. Commun., 73, 1693 (2008)
- Perdew JP, Burke K, Ernzerhof M, Phys. Rev. Lett., 77, 3865 (1996)
- Perdew JP, Burke K, Wang Y, Phys. Rev. B, 54, 16533 (1996)
- DMol, Accelrys, Inc., San Diego.
- Monkhorst HJ, Pack JD, Phys. Rev. B, 13, 5188 (1976)
- Mulliken RS, J. Chem. Phys., 23, 2338 (1955)
- Segall MD, Pickard CJ, Shah R, Payne MC, Mol. Phys., 89, 571 (1996)