화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.43, 93-105, November, 2016
Optimal design and performance analyses of the glycerol ether production process using a reactive distillation column
E-mail:
The use of glycerol from biodiesel industries to produce high value-added products would increase the competitive potential of biodiesel producers. The present work investigates the production of glycerol ethers, a diesel and biodiesel additive. A single reactive distillation is proposed to overcome the low glycerol conversion and product yield that limit a conventional process. The theoretical performance of the reactive distillation is analyzed taking glycerol conversion and the glycerol ether yield into consideration. The simulation results show that the glycerol and mono-tert-butyl ether of glycerol are completely used in the reactive stages and thus, the recycle section by which glycerol and the mono-tertbutyl ether of glycerol are recovered is unessential. The parametric analysis for the reactive distillation is reported. Based on the process economic analysis from a total annual cost, the optimal reactive distillation configuration for glycerol ether production consists of two rectifying stages, eight reactive stages and one stripping stage.
  1. Liu W, Yin P, Liu X, Zhang S, Qu R, J. Ind. Eng. Chem., 21, 893 (2015)
  2. Singhabhandhu A, Tezuka T, Energy, 35(6), 2493 (2010)
  3. Neumann K, Werth K, Martin A, Gorak A, Chem. Eng. Res. Des., 107, 52 (2016)
  4. Ayoub M, Abdullah AZ, Renew. Sust. Energ. Rev., 16(5), 2671 (2012)
  5. Tan HW, Aziz ARA, Aroua MK, Renew. Sust. Energ. Rev., 27, 118 (2013)
  6. Bueno L, Toro C, Martin M, Chem. Eng. Res. Des., 93, 432 (2015)
  7. Rastegari H, Ghaziaskar HS, J. Ind. Eng. Chem., 21, 856 (2015)
  8. Gholami Z, Abdullah AH, Lee K, Renew. Sust. Energ. Rev., 39, 327 (2014)
  9. Rahmat N, Abdullah AZ, Mohamed AR, Renew. Sust. Energ. Rev., 14, 987 (2010)
  10. Bozkurt OD, Tunc FM, Baglar N, Celebi S, Gunbas ID, Uzun A, Fuel Process. Technol., 138, 780 (2015)
  11. Viswanadham N, Saxena SK, Fuel, 103, 980 (2013)
  12. Ozbay N, Oktar N, Dogu G, Dogu T, Int. J. Chem. React. Eng., doi:http://dx.doi.org/10.2202/1542-6580.2149., 8(1) (2010)
  13. Frusteri F, Arena F, Bonura G, Cannilla C, Spadaro L, Di Blasi O, Appl. Catal. A: Gen., 367(1-2), 77 (2009)
  14. Vlad E, Bildea CS, Bozga G, Sci. World J., 2012 (2012)
  15. Lutze P, Gorak A, Chem. Eng. Res. Des., 91(10), 1978 (2013)
  16. Arpornwichanop A, Koomsup K, Assabumrungrat S, J. Ind. Eng. Chem., 14(6), 796 (2008)
  17. Zhang L, Chen HS, Yuan Y, Yu JP, Wang SF, Huang KJ, Chem. Eng. Res. Des., 100, 311 (2015)
  18. Vlad E, Bildea CS, Chem. Eng. Trans., 29, 589 (2012)
  19. Kiatkittipong W, Intaracharoen P, Laosiripojana N, Chaisuk C, Praserthdam P, Assabumrungrat S, Comput. Chem. Eng., 35(10), 2034 (2011)
  20. Douglas JM, Conceptual Design of Chemical Processes, McGraw-Hill, New York, USA, 1988.