화학공학소재연구정보센터
Polymer(Korea), Vol.40, No.6, 985-991, November, 2016
화장용 기름 종이로 이용하기 위한 폴리에틸렌옥사이드 나노섬유 쉬트의 기름 흡수능력 평가
Oil Absorption Capacity of Polyethylene Oxide Nanofiber Sheets for Oil Blotting Cosmetic Sheets
E-mail:
초록
본 연구는 기존에 시판되고 있는 화장용 기름 흡수 쉬트 제품들과 비교하여 친환경적으로 분해성이 좋고 높은 표면적과 기름 흡수 능력을 가지는 제품 개발를 목적으로 하였다. 유기용매를 사용하지 않고 물에 잘 녹는 양친성 고분자인 폴리에틸렌 옥사이드(PEO)를 전기방사 방법을 이용하여 직경이 다른 두 종류의 나노섬유 쉬트를 개발하였고, 기름 흡수 및 보유 능력, 기름 흡수 후 광 투과성, 표면적, 열적 및 기계적 특성 평가를 수행하였다. 표면적이 높은 PEO 나노섬유 쉬트가 기존 제품과 비교하여 기름 흡수 능력이 11배 증가하였고 열적 및 기계적 특성 또한 향상됨을 확인하였다. 이러한 결과를 통하여 화장품 시장 및 의료 분야에 응용가능성을 확인하였다.
Oil blotting cosmetic sheets are important products in the cosmetic and healthcare applications. However, they are limited by their relatively low oil absorption capacity due to their low surface area. In this study, I used an electrospinning method to develop two types of polyethylene oxide (PEO) nanofiber sheets with a large surface area. The properties of sheet, such as the change in the optical transmittance due to oil absorption, the oil absorption capacity, the oil retention capacity, the specific surface area, and thermal and mechanical properties, were evaluated. The oil absorption capacity of PEO nanofiber sheets (25 gauge) was found to be about 11 times greater than that of commercial oil blotting cosmetic sheets and the surface area, as well as the thermal and mechanical properties, increased slightly compared to PEO nanofiber sheets (21 gauge). PEO exhibit ideal characteristics of oil sorbent materials. Therefore, PEO nanofiber sheets with a high surface area are expected to exhibit greater oil absorption capacity than conventional oil blotting cosmetic sheets.
  1. Karan CP, Rengasamy RS, Das D, Indian J. Fibre Text. Res., 36, 190 (2011)
  2. Li H, Wu W, Bubakir MM, Chen H, Zhong X, Liu Z, Ding Y, Yang W, J. Appl. Polym. Sci., 131, 1 (2014)
  3. Sudesh K, Loo CY, Goh LK, Iwata T, Maeda M, Macromol. Biosci., 7, 1199 (2007)
  4. Yuan F, Wei JF, Tang EQ, Zhao K, E-Polymers, 9, 1 (2009)
  5. Jang ES, Lee WK, Park CY, Min SK, Jang SH, J. Environ. Sci. Int., 22, 243 (2013)
  6. Lin J, Ding B, Yang J, Yu J, Sun G, Nanoscale, 4, 176 (2012)
  7. Mahajan S, Renker S, Simon PFW, Gutmann JS, Jain A, Gruner SM, Fetters LJ, Coates GW, Macromol. Chem. Phys., 204, 1047 (2013)
  8. Bailey TS, Hardy CM, Epps TH, Bates FS, Macromol, 35, 7007 (2002)
  9. Angot S, Taton D, Gnanou Y, Macromol, 33, 5410 (2000)
  10. Hillmyer MA, Bates FS, Macromol, 29, 6994 (1996)
  11. Caroline DT, Cosette P, Molle G, Muller G, De E, Protein Science, 12, 681 (2003)
  12. Gustafsson J, Ljusberg-Wahren H, Almgren M, Larsson K, Langmuir, 13(26), 6964 (1997)
  13. Hu JM, Qian YF, Wang XF, Liu T, Liu SY, Langmuir, 28(4), 2073 (2012)
  14. Lochhead RY, The role of polymers in cosmetics: recent trends, ACS Symposium Series, American Chemistry Society, 1996, Vol 961, pp 3-56 (1996).
  15. Israelachvili JN, Proc. Natl. Acad. Sci. U.S.A., 94, 8378 (1997)
  16. Calabro E, Magazu S, Adv. Phys. Chem., 2013, 1 (2013)
  17. Pilehrood MK, Dilamian M, Mirian M, Sadeghi-Aliabadi H, Maleknia L, Nousiainen P, Harlin A, BioMed. Res. Int., 2014, 1 (2014)
  18. Liu VA, Jastromb WE, Bhatia SN, J. Biomed. Mater. Res., 60, 126 (2002)
  19. Rosler A, Vandermeulen GWM, Klok HA, Adv. Drug Deliv. Rev., 64, 270 (2012)
  20. Azli AA, Manan NSA, Kadir MFZ, Adv. Mater. Sci. Eng., 2015, 1 (2015)
  21. Moon S, Ryu BY, Choi J, Jo B, Farris RJ, Polym. Eng. Sci., 49(1), 52 (2009)
  22. Gondaliya N, Kanchan DK, Sharma P, Joge P, Adv. Mater. Sci. Appl., 2, 1639 (2011)