화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.26, No.10, 570-576, October, 2016
초음파 분무 열분해 공정을 이용한 수계 SiO2 Sol로부터의 구형 SiO2 분말 합성
Fabrication of Spherical SiO2 Powders from Aqueous SiO2 Sol via Ultrasonic Pyrolysis
E-mail:
Using the ultrasonic pyrolysis method, spherical SiO2 powders were synthesized from aqueous SiO2 sol as a starting material. The effects of pyrolysis conditions such as reaction temperature, SiO2 sol concentration, and physical properties of precursor were investigated for the morphologies of the resulting SiO2 powders. The particle size, shape, and crystallite size of the synthesized SiO2 powders were demonstrated according to the pyrolysis conditions. Generally, the synthesized SiO2 particles were amorphous phase and showed spherical morphology with a smooth surface. It was revealed that increased crystallite size and decreased spherical SiO2 particle size were obtained with increases of the pyrolysis reaction temperature. Also, quantity of spherical SiO2 particles decreased with the decrease in the concentration and surface tension of the precursor.
  1. Cho SH, Park SY, Kim CS, Choi PP, Park JK, Colloids Surf. A: Physicochem. Eng. Asp., 44, 354 (2014)
  2. Jesionowski T, J. Mater. Process. Technol., 203, 121 (2008)
  3. Sheng Y, Zou J, Li B, Tu M, J. Wuhan Univ. Tech. Mater. Sci. Ed., 23, 440 (2008)
  4. Kim KS, Kim SS, Kim SK, Kim JK, Kim WS, HWAHAK KONGHAK, 38(6), 817 (2000)
  5. Jesionowski T, Powder Technol., 127(1), 56 (2002)
  6. Jeong HJ, Master’s Thesis, p. 2-3, Changwon University, Changwon (2010).
  7. Kang YC, Jung KY, Park SB, Korean Chem. Eng. Res., 44(3), 235 (2006)
  8. Bae BS, Jung SJ, Lee B, Moon CK, Choi HL, J. Ocean Eng. Tech., 24, 86 (2010)
  9. Lim CH, Lee KT, Ceram. Int., 42, 13715 (2016)
  10. Cho YH, Kang YC, Lee JH, Sens. Actuators B-Chem., 176, 971 (2013)
  11. Yatsuyanagi F, Suzuki N, Ito M, Kaidou H, Polymer, 42(23), 9523 (2001)
  12. Henrist C, Toussaint C, Vroede JD, Chatzikyriakou D, Dewalque J, Colson P, Maho A, Cloots R, Microporous Mesoporous Mater., 221, 182 (2016)
  13. Ginsburg A, Keller DA, Barad HN, Rietwyk K, Bouhadana Y, Anderson A, Zaban A, Thin Solid Films, 615, 261 (2016)
  14. Pandey R, Yuldashev S, Nguyen HD, Jeon HC, Kang TW, Curr. Appl. Phys., 12, S56 (2012)
  15. Camargo MTT, Jacques Q, Caliman LB, Miagava J, Hotza D, Castro RHR, Gouvea D, Mater. Lett., 171, 232 (2016)
  16. Baez-Rodriguez A, Alvarez-Fragoso O, Garcia-Hipolito M, Guzman-Mendoza J, Falcony C, Ceram. Int., 41, 7197 (2015)
  17. Lang RJ, J. Acoust. Soc. Am., 34, 6 (1962)
  18. Bogovic J, Schwinger A, Stopic S, Schroeder J, Gaukel V, Schuchmann HP, Friedrich B, Metall-Forschung, 65, 455 (2011)
  19. Coulart C, Djurado E, J. European Ceram. Soc., 33, 769 (2013)
  20. Weast RC, Handbook of Chemistry and Physics, 55th ed., p.F-11, F-43, CRC press, Cleveland, USA (1974).