화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.33, No.12, 3465-3472, December, 2016
CO2 capture using aqueous solutions of K2CO3+2-methylpiperazine and monoethanolamine: Specific heat capacity and heat of absorption
E-mail:
The specific heat capacity, heat of CO2 absorption, and CO2 absorption capacity of aqueous solutions of potassium carbonate (K2CO3)+2-methylpiperazine (2-MPZ) and monoethanolamine (MEA) were measured over various temperatures. An aqueous solution of K2CO3+2-MPZ is a promising absorbent for CO2 capture because it has high CO2 absorption capacity with improved absorption rate and degradation stability. Aqueous solution of MEA was used as a reference absorbent for comprison of the thermodynamic characteristics. Specific heat capacity was measured using a differential scanning calorimeter (DSC), and heat of CO2 absorption and CO2 absorption capacity were measured using a differential reaction calorimeter (DRC). The CO2-loaded solutions had lower specific heat capacities than those of fresh solutions. Aqueous solutions of K2CO3+2-MPZ had lower specific heat capacity than those of MEA over the temperature ranges of 303-353 K. Under the typical operating conditions for the process (CO2 loading=0.23mol- CO2·mol-1-solute in fresh solution, T=313 K), the heat of absorption (-ΔHabs) of aqueous solutions of K2CO3+2-MPZ and MEA were approximately 49 and 75 kJ·mol-CO2, respectively. The thermodynamic data from this study can be used to design a process for CO2 capture.
  1. Barzagli F, Mani F, Peruzzini M, Energy Environ. Sci., 3, 772 (2010)
  2. Ahmadi M, Gomes VG, Ngian K, Sep. Purif. Technol., 63(1), 107 (2008)
  3. Oexmann J, Kather A, Linnenberg S, Liebenthal U, Greenhouse Gas Sci. Technol., 2, 80 (2012)
  4. Wang M, Lawal A, Stephenson P, Sidders J, Ramshaw C, Chem. Eng. Res. Des., 89(9A), 1609 (2011)
  5. Yokoyama T, Sep. Purif. Technol., 94, 97 (2012)
  6. Oexmann J, Kather A, Int. J. Greenhouse Gas Control., 4, 36 (2010)
  7. Weiland RH, Dingman JC, Cronin DB, J. Chem. Eng. Data, 42(5), 1004 (1997)
  8. Chiu LF, Liu HF, Li MH, J. Chem. Eng. Data, 44, 631 (1999)
  9. Chiu LF, Li MH, J. Chem. Eng. Data, 44, 1396 (1999)
  10. Chen YJ, Li MH, J. Chem. Eng. Data, 46(1), 102 (2001)
  11. Chen YJ, Shih TW, Li MH, J. Chem. Eng. Data, 46(1), 51 (2001)
  12. Harris F, Kurnia KA, Mutalib MIA, Murugesan T, J. Chem. Eng. Data, 55(1), 547 (2010)
  13. Song HJ, Lee MG, Kim H, Gaur A, Park JW, J. Chem. Eng. Data, 56(4), 1371 (2011)
  14. Kim I, Svendsen HF, Ind. Eng. Chem. Res., 46(17), 5803 (2007)
  15. McCann N, Maeder M, Attalla M, Ind. Eng. Chem. Res., 47(6), 2002 (2008)
  16. Qin F, Wang S, Kim I, Svendsen HF, Chen C, Int. J. Greenhouse Gas Control., 5, 405 (2011)
  17. Arcis H, Ballerat-Busserolles K, Rodier L, Coxam JY, J. Chem. Eng. Data, 56(8), 3351 (2011)
  18. Filburn T, Helble JJ, Weiss RA, Ind. Eng. Chem. Res., 44(5), 1542 (2005)
  19. Kim I, Hoff KA, Hessen ET, Haug-Warberg T, Svendsen HF, Chem. Eng. Sci., 64(9), 2027 (2009)
  20. Arcis H, Rodier L, Coxam JY, J. Chem. Thermodyn., 39(6), 878 (2007)
  21. Arcis H, Ballerat-Busserolles K, Rodier L, Coxam JY, J. Chem. Eng. Data, 57(3), 840 (2012)
  22. Arcis H, Rodier L, Ballerat-Busserolles K, Coxam JY, J. Chem. Thermodyn., 41(6), 783 (2009)
  23. Kim I, Svendsen HF, Int. J. Greenhouse Gas Control., 5, 390 (2011)
  24. Chen X, Rochelle GT, Chem. Eng. Res. Des., 87, 1693 (2011)
  25. Laddha SS, Danckwerts PV, Chem. Eng. Sci., 37, 665 (1982)
  26. Ramazani R, Mazinani S, Hafizi A, Jahanmiri A, Van der Bruggen B, Darvishmanesh S, Sep. Sci. Technol., 51(2), 327 (2016)
  27. Cullinane JT, Rochelle GT, Chem. Eng. Sci., 59(17), 3619 (2004)
  28. Cullinane JT, Ph.D. Dissertation, University of Texas (2005).
  29. Cullinane JT, Rochelle GT, Fluid Phase Equilib., 227(2), 197 (2005)
  30. Kohl AL, Nielsen RB, Gas Purification; 5th Ed., Gulf Publishing Company, Huston (1997).
  31. Chen X, Rochelle GT, Ind. Eng. Chem. Res., 52(11), 4229 (2013)
  32. Astarita G, Savage DW, Longo JM, Chem. Eng. Sci., 36, 581 (1981)
  33. Kim YE, Choi JH, Nam SC, Yoon YI, J. Ind. Eng. Chem., 18(1), 105 (2012)
  34. Kim YE, Yun SH, Choi JH, Nam SC, Park SY, Jeong SK, Yoon YI, Energy Fuels, 29(4), 2582 (2015)
  35. Wang M, Lawal A, Stephenson P, Sidders J, Ramshaw C, Chem. Eng. Res. Des., 89(9A), 1609 (2011)
  36. Kim YE, Lim JA, Jeong SK, Yoon YI, Bae ST, Nam SC, Bull. Korean Chem. Soc., 34, 783 (2013)
  37. Lim JA, Kim DH, Yoon Y, Jeong SK, Park KT, Nam SC, Energy Fuels, 26(6), 3910 (2012)
  38. Rao AB, Rubin ES, Environ. Sci. Technol., 36, 4467 (2002)
  39. Sakwattanapong R, Aroonwilas A, Veawab A, Ind. Eng. Chem. Res., 44(12), 4465 (2005)
  40. Idem R, Wilson M, Tontiwachwuthikul P, Chakma A, Veawab A, Aroonwilas A, Gelowitz D, Ind. Eng. Chem. Res., 45(8), 2414 (2006)
  41. Svensson H, Hultenberg C, Karlsson HT, Int. J. Greenhouse Gas Control., 17, 89 (2013)
  42. Versteeg GF, van Swaaij WPM, Chem. Eng. Sci., 43, 573 (1988)
  43. Littel RJ, Versteeg GF, van Swaaij WPM, Chem. Eng. Sci., 47, 2027 (1992)