Korean Journal of Chemical Engineering, Vol.33, No.12, 3523-3528, December, 2016
Water gas shift reaction in a catalytic bubbling fluidized bed reactor
E-mail:
The water gas shift reaction in a catalytic bubbling fluidized bed reactor was investigated by using simulated syngas (40% H2, 40% CO and 20% CO2) for the pre-combustion CO2 capture and hydrogen production application. A commercial low temperature shift (LTS) catalyst with particle sizes of 200-300 μm was used to investigate the promotion effect by exchanging the fixed bed reaction with the fluidized bed reactor. The effects of the reactor temperature (180-400 ℃), space velocity (800-4,800 cm3/hㆍg), and steam/CO ratio (1.0-2.5) on the CO conversion and syngas composition were determined, and the highest CO conversion was 86.8% at 300 ℃ with the LTS catalyst at a space velocity of 800 cm3/hㆍg and steam/CO ratio of 2.5. The experiments exhibited an improvement in activity and a conversion reached that given by equilibrium at temperatures over 300 ℃. Also, the performance was much improved than that when a fixed bed system was used.
- Lee SH, Kim JN, Eom WH, Ryi SK, Park JS, Baek IH, Chem. Eng. J., 207-208, 521 (2012)
- Fernandez E, Helmi A, Coenen K, Melendez J, Viviente JL, Tanaka DAP, Annaland MV, Gallucci F, Int. J. Hydrog. Energy, 40(8), 3506 (2015)
- Agrell J, Birgersson H, Boutonnet M, Melian-Cabrera I, Navarro RM, Fierro JLG, J. Catal., 219(2), 389 (2003)
- Lee SH, Lee JG, Kim JH, Choi YC, Fuel, 85(5-6), 803 (2006)
- Shoko E, McLellan B, Dicks AL, da Costa JCD, Int. J. Coal Geol., 65(3-4), 213 (2006)
- Lee SH, Choi KB, Lee JG, Kim JH, Korean J. Chem. Eng., 23(4), 576 (2006)
- Lee SH, Yoon SJ, Ra HW, Il Son Y, Hong JC, Lee JG, Energy, 35(8), 3239 (2010)
- Hydrogen from Coal Program RD & D Plan, U.S. Dept. of Energy (2007).
- Bustamante F, The High-Temperature, High-Pressure Homogeneous Water-Gas Shift Reaction in a Membrane Reactor, Ph.D. Thesis, University of Pittsburgh (2004).
- Lim H, Korean J. Chem. Eng., 32(8), 1522 (2015)
- Costa JLR, Marchetti GS, Rangel MDC, Catal. Today, 77(3), 205 (2002)
- Johnsen RE, Molenbroek AM, Stahl K, J. Appl. Crystallogr., 39, 519 (2006)
- Vandenbussche KM, Froment GF, J. Catal., 161(1), 1 (1996)
- Choi Y, Stenger HG, J. Power Sources, 124(2), 432 (2003)
- Patil CS, Annaland MV, Kuipers JAM, Ind. Eng. Chem. Res., 44(25), 9502 (2005)
- Kunii D, Levenspiel O, Fluidization Engineering, Butterworth-Heinemann, Massachusetts, USA (1991).
- Lee SH, Lee DH, Kim SD, Korean J. Chem. Eng., 18(3), 387 (2001)
- Lee SH, Kim SD, Park SH, Korean J. Chem. Eng., 19(6), 1020 (2002)
- Lim JH, Shin JH, Bae K, Kim JH, Lee DH, Han JH, Lee DH, Korean J. Chem. Eng., 32(9), 1938 (2015)
- Ruettinger W, Ilinich O, Farrauto RJ, J. Power Sources, 118(1-2), 61 (2003)
- Arbelaadez O, Reina TR, Ivanova S, Bustarnante F, Villa AL, Centeno MA, Odriozola JA, Appl. Catal. A: Gen., 497, 1 (2015)
- Physical and Thermodynamic Properties of Elements and Compounds, United Catalysts Inc., Louisville, KY (1990).
- Ladebeck JR, Wagner JP, in Handbook of Fuel cells, Fundamentals, Technology and Applications, Vielstich W, Lamm A, Gasteiger HA, Ed., Wiley, Chichester, Vol. 3, Part 2, 190 (2003).
- Ryu H, Park J, Lee D, Park J, Bae D, Trans. Korean Hydrogen New Energy Soc., 26(2), 96 (2015)
- Vandenbussche KM, Froment GF, J. Catal., 161(1), 1 (1996)
- Khajeh S, Aboosadi ZA, Honarvar B, J. Natural Gas Sci. Eng., 19, 152 (2014)
- van der Laan GP, Beenackers AACM, Appl. Catal. A: Gen., 193(1-2), 39 (2000)