화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.54, No.6, 838-846, December, 2016
제올라이트 13X에 의한 배가스 성분의 흡착 특성 및 불순물의 영향
Adsorption Characteristics of Flue Gas Components on Zeolite 13X and Effects of Impurity
E-mail:
초록
산업체에서 많이 사용되는 연소공정은 배가스 성분의 회수나 제거를 필요로 한다. 최근에는 배가스로부터 이산화탄소를 회수하기 위해 제올라이트 13X를 사용하는 MBA(이동상흡착) 공정이 개발되었다. 본 연구에서는 제올라이트 13X에 대한 이산화탄소, 질소, 이산화황 및 수증기의 흡착 실험을 수행하여 흡착평형 및 고체입자 안으로의 흡착속도를 조사하였다. 여러 실험온도에서의 흡착데이터를 Langmuir, Toth, Freundlich 등온흡착식에 적용하여 각 흡착등온식의 파라미터를 구했고, 이론식에 의한 예측값과 실험데이터가 잘 일치함을 확인하였다. 이산화황과 수증기가 불순물로 존재할 경우에 주성분인 이산화탄소의 흡착량을 측정하였다. 이성분 흡착 데이터는 순수 성분에 대해 얻어진 파라미터를 extended Langmuir 등온흡착식에 적용하여 예측한 결과와 잘 일치하였다. 다만, H2O 불순물이 대략 ~10-5 H2O mol/g zeolite 13X 이하 존재할 때에는 CO2 흡착량이 순수 CO2의 흡착보다 오히려 소량 증가하는 현상이 관찰되었다. 실험으로 측정한 흡착속도를 구형 입자 확산모델에 적용하여 이산화탄소, 이산화황, 질소, 수분의 확산계수와 활성화에너지를 구했다. 미량의 불순물이 흡착되어있을 때는 이산화탄소나 이산화황의 확산계수가 줄어들었다. 본 연구에서 얻어진 파라미터 값들은 실제 흡착공정의 설계에 유용할 것이다.
Most of combustion processess used in industries require recovering or removing flue gas components. Recently a new MBA (moving bed adsorption) process for recovering CO2 using zeolite 13X was developed. In this study, adsorption experiments for carbon dioxide, nitrogen, sulfur dioxide, and water vapor on zeolite 13X were carried out. Adsorption equilibrium and adsorption rate into solid particle were investigated. Langmuir, Toth, and Freundlich isotherm parameters were calculated from the experiment data at various temperatures. Experimental results were consistent with the theoretically predicted values. Also CO2 adsorption amount was measured under the conditions with impurities such as SO2 and H2O. Binary adsorption data were well fitted to the extended Langmuir isotherm using parameters obtained from pure component experiment. However, H2O impurity less than, roughly, ~10-5 H2O mol/g zeolite 13X enhanced slightly CO2 adsorption. Spherical particle diffusion model well described experimentally measured adsorption rate. Diffusion coefficients and activation energies of CO2, SO2, N2, H2O were obtained. Diffusion coefficients of CO2 and SO2 decreased with small amount of preadsorbed impurity. Parameter values from this study will be helpful to design of real commercial adsorption process.
  1. Xu X, Song C, Wincek R, Andresen JM, Miller BG, Scaroni AW, Fuel Chemistry Division Preprints, 48(1), 162 (2003)
  2. Testo, Inc., “Flue Gas Analysis in Industry: Practical guide for Emission and Process Measurements,” Sparta, New Jersey(2004).
  3. Beychok M, “Fossil Fuel Combustion Flue Gases,” http://www.eoearth.org/view/article/171355(2012).
  4. Martin R, “Paris Climate Agreement Rests on Shaky Technological Foundations,” MIT Technology Review, https://www.technologyreview.com/s/544551/paris-climate-agreement-rests-on-shaky-technological-foundations/(2015).
  5. Yu CH, Huang CH, Tan CS, Aerosol and Air Quality Research, 12, 745 (2012)
  6. Wang J, Huang L, Yang R, Zhang Z, Wu J, Gao Y, Wang Q, O'Hareb D, Zhong Z, Energy Environ. Sci., 7, 3478 (2014)
  7. Kikkinides ES, Yang RT, Cho SH, Ind. Eng. Chem. Res., 32(11), 2714 (1993)
  8. Liu Z, Grande CA, Li P, Yu JG, Rodrigues AE, Sep. Purif. Technol., 81(3), 307 (2011)
  9. Dantas TLP, Luna FMT, Silva IJ, Torres AEB, de Azevedo DCS, Rodrigues AE, Moreira RFPM, Chem. Eng. J., 172(2-3), 698 (2011)
  10. Schell J, Casas N, Marx D, Mazzotti M, Ind. Eng. Chem. Res., 52(24), 8311 (2013)
  11. Ling J, Ntiamoah A, Xiao P, Xu D, Webley PA, Zhai Y, Austin Chem. Eng., 1(2), 1009 (2014)
  12. Kim H, Lee J, Lee S, Han J, Lee IB, Korean Chem. Eng. Res., 53(1), 31 (2015)
  13. Kim K, Son Y, Lee WB, Lee KS, Int. J. Greenhouse Gas Control, 17, 13 (2013)
  14. Son Y, Kim K, Lee KS, Energy Fuels, 28(12), 7599 (2014)
  15. Hauchhum L, Mahanta P, Int. J. Energy Environ. Eng., 5(4), 349 (2014)
  16. Bezerra DP, Oliveira RS, Vieira RS, Cavalcante CL, Azevedo DCS, Adsorption, 17(1), 235 (2011)
  17. Cavenati S, Grande CA, Rodrigues AE, J. Chem. Eng. Data, 49(4), 1095 (2004)
  18. Chue KT, Kim JN, Yoo YJ, Cho SH, Yang RT, Ind. Eng. Chem. Res., 34(2), 591 (1995)
  19. Crank J, “The Mathematics of Diffusion,” Oxford University Press, London, 89-103(1975).
  20. Ryu YK, Lee SJ, Kim JW, Lee CH, Korean J. Chem. Eng., 18(4), 525 (2001)
  21. Arrhenius SA, Z. Physik. Chem., 4, 96 (1889)
  22. Gebald C, Wurzbacher JA, Borgschulte A, Zimmermann T, Steinfeld A, Environ. Sci. Technol., 48(4), 2497 (2014)
  23. Li G, Singh R, Xiao P, Webley P, “Binary Adsorption Equilibrium of Carbon Dioxide and Water Vapor on Zeolite HY,” 10th International Conference on Fundamentals of Adsoroption, May, Awaji, Hyogo, Japan(2010).
  24. Ahn NG, Kang SW, Min BH, Suh SS, J. Chem. Eng. Data, 51(2), 451 (2006)
  25. Builes S, Sandler SI, Xiong RC, Langmuir, 29(33), 10416 (2013)
  26. Sircar S, Mohr R, Ristic C, Rao MB, J. Phys. Chem. B, 103(31), 6539 (1999)
  27. Chakraborty A, Saha BB, Koyama S, Ng KC, Appl. Phys. Lett., 89, 171901 (2006)