화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.27, No.6, 583-589, December, 2016
윤활유첨가제로써 마모억제 성능을 갖는 Dimethacryloyloxy Alkane 유도체에 관한 연구
A Study on Dimethacryloyloxy Alkane Derivatives Having an Anti-wear Performance as Lubricating Oil Additives
E-mail:
초록
Zinc dialkyldithiophosphate (ZDDP)와 같이 금속을 포함한 윤활유 첨가제는 값이 싸다는 이점 때문에 널리 사용되고 있으나, 재와 같은 불순물이 발생한다는 단점이 있다. 본 연구에서는 ZDDP를 부분적으로 대체하여 zinc와 같은 금속을 포함하지 않는 구조인 알칸디올로부터 유래하는 bis[3-(dialkyloxyphosphorothionyl) thio-2-methylpropanyloxy] butane (BAP4)을 간편하고 효율적으로 합성하였고, 합성한 BAP4 화합물들에 따른 내 마모 특성을 살펴보았다. 여러 가지 알킬기가 있는 BAP4 화합물들이 4-ball 시험법에 의해 마모 직경(Wear scar diameter, WSD) 값이 측정되었다. BAP4화합물에서 알킬기가 4에서 8로 증가함에 따라 WSD 값은 0.59 mm에서 0.45 mm로 급격히 감소했으나, BAP4의 알킬기가 8에서 14로 증가할 경우 WSD 값은 0.45 mm에서 0.50 mm로 서서히 증가했다. 따라서 BAP4 화합물 중 가장 WSD 값이 적게 나타난 것은 B8P4이었다. 윤활기유에 B8P4와 ZDDP를 0.50 wt%로 첨가하여 4-ball 시험을 실시한 결과, B8P4와 ZDDP의 WSD 값은 각각 0.45, 0.54 mm로 측정되었다. 또한, 열 중량 분석기(Thermogravimetric Analyzer, TGA)를 통해 열안정성을 확인하였고, 에너지 분산형 X-선 분광분석기(Energy-Dispersive X-rays Spectroscopy, EDS)로 tribofilm이 제대로 형성되었는지를 측정하였다.
Lubricant additives including zinc dialkyldithiophosphate (ZDDP) containing metal have been widely used due to the advantage of very low cost, but they can generate impurities such as ash. In this work, ZDDP containing metals was partially replaced with bis[3-(dialkyloxyphosphorothionyl) thio-2-methylpropanyloxy] butane (BAP4s) which was synthesized conveniently and effectively from alkanediol without any metal components. Also, the wear resistance property of synthesized BAP4s were studied. Wear scar diameter (WSD) values of BAP4s with butyl, octyl, decyl, dodecyl or tetradecyl groups were also measured by four-ball test. As the length of the alkyl group increased from 4 to 8, the WSD value of BAP4s decreased rapidly from 0.59 to 0.45 mm, but from 8 to 14, the value increased very slowly from 0.45 to 0.50 mm. Thus, among all BAP4s, B8P4 having BAP4 with the octyl group, showed the lowest WSD value. Furthermore, the WSD values were measured in a lubricant base oil mixed with a 0.50 percent concentration (w/w) of either BAP4 or ZDDP. The former was 0.55 mm, and the latter was 0.45 mm. The thermal stability and tribofilm formation peroperty were also measured by thermogravimetric analyzer (TGA) and energy-dispersive X-rays spectroscopy (EDS), respectively.
  1. Shah FU, Glavatskih S, Hoglund E, Lindberg M, Antzutkin ON, ACS Appl. Mater. Interfaces, 3, 956 (2011)
  2. Willermet PA, Tribol. Lett., 5, 41 (1998)
  3. Nicholls MA, Do T, Norton PR, Kasrai M, Bancroft GM, Tribol. Int., 38, 15 (2005)
  4. Freuler HC, Modified lubricating oil, US Patent 2,364,283 (1994).
  5. Freuler HC, Modified lubricating oil, US Patent 2,364,284 (1944).
  6. McQueen JS, Gao H, Black ED, Gangopadhyay AK, Jensen RK, Tribol. Int., 38, 289 (2005)
  7. Spikes H, Tribol. Lett., 17, 469 (2004)
  8. Spikes H, Lubrication Sci., 20, 103 (2008)
  9. Barnes AM, Bartle KD, Thibon VRA, Tribol. Int., 34, 389 (2001)
  10. Martin JM, Tribol. Lett., 6, 1 (1999)
  11. Fuller M, Yin Z, Kasrai M, Bancroft GM, Yamaguchi ES, Ryason PR, Willermet PA, Tan KH, Tribol. Int., 30, 305 (1997)
  12. Wu YL, Dacre B, Tribol. Int., 30, 445 (1997)
  13. Mahdi I, Garg R, Srivastav A, Int. J. Eng. Invent., 1, 47 (2012)
  14. Willermet PA, Dailey DP, Carter RO Ⅲ, Schmitz PJ, Zhu W, Tribol. Int., 28, 177 (1995)
  15. Najman MN, Kasrai M, Bancroft GM, Miller A, Tribol. Lett., 13, 209 (2002)
  16. Yin Z, Kasrai M, Fuller M, Bancroft GM, Fyfe K, Tan KH, Wear, 202, 172 (1997)
  17. Yin Z, Kasrai M, Fuller M, Bancroft GM, Fyfe K, Tan KH, Wear, 202, 192 (1997)
  18. Hsu SM, Gates RS, Tribol. Int., 38, 305 (2005)
  19. Fuller MLS, Kasrai M, Bancroft GM, Fyfe K, Tan KH, Tribol. Int., 31, 627 (1998)
  20. Ramakumar SSV, Rao AM, Srivastava SP, Wear, 156, 101 (1992)
  21. Inoue K, Watanabe H, ASLE Trans., 26, 189 (1983)
  22. Kapsa P, Martin JM, Blanc C, Georges JM, J. Lubrication Technol., 103, 486 (1981)