화학공학소재연구정보센터
Applied Biochemistry and Biotechnology, Vol.180, No.2, 210-227, 2016
Functional Characterization of a Novel Marine Microbial Esterase and its Utilization in the Enantioselective Preparation of (R)-Methyl 2-Chloropropionate
Chiral 2-chloropropanoic acids and their ester derivatives are crucial intermediates in the synthesis of many chemicals, especially herbicides. The enzymatic synthesis of chiral 2-chloropropanoic acids and their ester derivatives by esterases was not easily achieved, because the structural difference between the two enantiomers was too small to be recognized by esterases. Herein, we report the expression and functional characterization of one novel low temperature-resistant esterase EST12-7 identified from the genome of Pseudonocardia antitumoralis SCSIO 01299 isolated from the sediments of the South China Sea. Biocatalyst EST12-7 could hydrolyze racemic methyl 2-chloropropinate and generate optically pure (R)-methyl 2-chloropropinate with high enantiomeric excess (> 99 %) and conversion (> 49 %) after process optimization. Notably, the addition of different surfactants and using surfactants of different concentrations in the kinetic resolution catalyzed by EST12-7 could greatly affect the enantiomeric excess and conversion rate of product (R)-methyl 2-chloropropinate.