화학공학소재연구정보센터
Applied Surface Science, Vol.389, 96-102, 2016
A controllable interface performance through varying ZnO nanowires dimensions on the carbon fibers
The fiber/matrix interface was reinforced by introducing nanostructure on the fiber surface, which enlarged the interphase area for stress transfer across the interface. To study the relationship between the interphase area and the interface performance, a low-temperature method for varying the dimensions of ZnO nanowires grown on the carbon fiber surface was proposed. The surface area with ZnO nanowires introduced was controlled by the conditions for growth: ultrasonic dispersion time, reaction time and Polyethylene glycol concentration. The effects of that varying ZnO the nanowires dimensions on interface performance was evaluated using wettability test and interfacial shear strength (IFSS). ZnO nanowires affect the liquid-motion on the fiber surface, and a shift to hydrophobicity was observed with decreasing the surface coverage of ZnO nanowires. A nonlinear relationship between IFSS and the ratio of the area of the introduced ZnO nanowires suggested unfavorable wettability impeded resin infiltration into ZnO nanowires. (C) 2016 Elsevier B.V. All rights reserved.