Applied Surface Science, Vol.389, 952-966, 2016
Corrosion inhibition performance of 2,5-bis(4-dimethylaminophenyl)-1,3,4-oxadiazole for carbon steel in HCl solution: Gravimetric, electrochemical and XPS studies
Corrosion inhibition of carbon steel in normal hydrochloric acid solution at 30 degrees C by 2,5-bis(4-dimethylaminophenyl)-1,3,4-oxadiazole (DAPO) has been studied by weight loss measurements and electrochemical techniques (polarization and AC impedance). The experimental results showed that DAPO acted as an efficient inhibitor against the carbon steel corrosion in 1M HCl, and its inhibition efficiency increased with the inhibitor concentration reaching a value up to 93% at 1 mM. Polarization studies showed that the DAPO was a mixed-type inhibitor. The adsorption of this 1,3,4-oxadiazole derivative on the carbon steel surface in 1M HCl solution followed the Langmuir adsorption isotherm and the corresponding value of the standard Gibbs free energy of adsorption(Delta G(ads)degrees) is associated to a chemisorption mechanism. Scanning Electron Microscopy(SEM) and X-Ray Photoelectron Spectroscopy (XPS) analyses were carried out to characterize the chemical composition of the inhibitive film formed on the steel surface. The surfaces studies showed that the inhibitive layer is composed of an iron oxide/hydroxide mixture where DAPO molecules are incorporated. The cytotoxicity of DAPO was also determined using cell culture system. (C) 2016 Elsevier B.V. All rights reserved.