화학공학소재연구정보센터
Automatica, Vol.74, 259-269, 2016
Initialization-free distributed algorithms for optimal resource allocation with feasibility constraints and application to economic dispatch of power systems
In this paper, the distributed resource allocation optimization problem is investigated. The allocation decisions are made to minimize the sum of all the agents' local objective functions while satisfying both the global network resource constraint and the local allocation feasibility constraints. Here the data corresponding to each agent in this separable optimization problem, such as the network resources, the local allocation feasibility constraint, and the local objective function, is only accessible to individual agent and cannot be shared with others, which renders new challenges in this distributed optimization problem. Based on either projection or differentiated projection, two classes of continuous time algorithms are proposed to solve this distributed optimization problem in an initialization-free and scalable manner. Thus, no re-initialization is required even if the operation environment or network configuration is changed, making it possible to achieve a "plug-and-play" optimal operation of networked heterogeneous agents. The algorithm convergence is guaranteed for strictly convex objective functions, and the exponential convergence is proved for strongly convex functions without local constraints. Then the proposed algorithm is applied to the distributed economic dispatch problem in power grids, to demonstrate how it can achieve the global optimum in a scalable way, even when the generation cost, or system load, or network configuration, is changing. (C) 2016 Elsevier Ltd. All rights reserved.