Biomacromolecules, Vol.17, No.8, 2619-2625, 2016
Self-Healing Elastin-Bioglass Hydrogels
Tailorable hydrogels that are mechanically robust, injectable, and self-healable, are useful for many biomedical applications including tissue repair and drug delivery. Here we use biological and chemical engineering approaches to develop a novel in situ forming organic/ inorganic composite hydrogel with dynamic aldimine cross links using elastin-like polypeptides (ELP) and bioglass (BG). The resulting ELP/BG biocomposites exhibit tunable gelling behavior and mechanical characteristics in a composition and concentration dependent manner. We also demonstrate self-healing in the ELP/BG hydrogels by successfully reattaching severed pieces as well as through rheology. In addition, we show the strength of genetic engineering to easily customize ELP by fusing cell-stimulating "RGD" peptide motifs. We showed that the resulting composite materials are cytocompatible as they support the cellular growth and attachment. Our robust in situ forming ELP/BG composite hydrogels will be useful as injectable scaffolds for delivering cell and drug molecules to promote soft tissue regeneration in the future.