화학공학소재연구정보센터
Polymer(Korea), Vol.24, No.6, 860-868, November, 2000
탄소섬유강화 복합재료의 전자파 차폐특성
Electromagnetic Interference Shielding of Carbon Fibers-Reinforced Composites
E-mail:
초록
본 연구에서는 섬유등급, 배향각 및 적층방법을 달리하여 제조한 탄소섬유강화 복합재료의 제조변수에 따른 전자파 차폐 특성에 관하여 고찰하였다. 그 결과, 탄소섬유강화 복합재료의 전자파 차폐효과는 섬유의 배향각도에 크게 좌우되었다. 특히 0 ℃ 의 배향각에서는 섬유의 등급에 따른 영향을 나타내었으며, 동일한 탄소섬유라 할지라도 배열방향에 따른 전기적 성질의 변화, 즉 전기적 이방성이 클수록 차폐효과는 커졌다. 각각의 적층방법에 따라 제조된 모든 시편은 83~98%의 차폐효과를 나타내었으나, 대칭구조와 비대칭구조에서는 적층각도가 커짐에 따라 차폐효과가 소폭 감소하였다. 그러나 반복구조에서는 위의 두 가지 구조와는 다른 경향을 나타내었으며, 특히 90 ℃ 반복구조의 경우 측정 주파수 전 영역에 걸쳐 90% 이상의 차폐력을 나타내었다.
In this work, the electro-magnetic interference(EMI) characteristics of PAN-based carbon fibers-reinforced composites are investigated with difference to manufactural parameters, i.e., fiber grade, fiber orientation angle, and laminating method. As a result, EMI shielding effectiveness(SE) of the composites greatly depends on a fiber orientation in composite angle. Especially, the fiber grade affects SE of composites in case of orientation angle of 0 ℃. Then the SE become greater as the change of electric character according to the arrangement directions, i.e., electrical anisotropy in the same constituent materials. This is due to the skin effect which is represented in the surface of electro-magnetic wave in high-frequency range. In all cases according to lamination methods, the composites represents SE of 83∼98% over. Whereas, in symmetric and unsymmetric laminate structures, the SE decreases slightly as the laminate angles of composites increases. On the contrary, the repeating laminates structure shows the opposite tendency. Especially, 90° repeating laminate structure shows the SE more than 90% over the measuring frequency.
  1. Naito Y, Suetake K, IEEE Trans. Microwave Theory Tech., MTT-19, 65 (1971)
  2. Musal HM, Hahn HT, IEEE Trans. Magn., 25, 3851 (1989) 
  3. Sternfield A, Modern Plast. Int., July, 48 (1982)
  4. Park SJ, Cho MS, Carbon, 38, 1053 (2000) 
  5. Olivero DA, Radford DW, J. Reinforced Plast. Compos., 17, 674 (1998)
  6. Ishino K, Electronic Ceram., 19, 22 (1988)
  7. Matsui F, Okada T, Kawakubo T, Plat. Surf. Finish., Feb., 48 (1991)
  8. Adoock JL, Plat. Surf. Finish., July, 40 (1983)
  9. Yacubowicz J, Narkis M, Benguigui L, Polym. Eng. Sci., 30, 459 (1990) 
  10. Chung KT, Sabo A, Pica AP, J. Appl. Phys., 53, 6867 (1992) 
  11. Smoluk A, Modern Plast. Int., Sep., 48 (1982)
  12. Musal HM, Smith DC, IEEE Trans. Magn., 26, 1462 (1990) 
  13. Schulz RB, Plantz VC, Brush DR, IEEE Trans. Electromagn. Compat., 30, 362 (1988)
  14. Huang CY, Pai JF, Eur. Polym. J., 34, 261 (1998) 
  15. Schulz RB, Plantz VC, Bruch DR, IEEE Trans. Magn., 30, 187 (1988)
  16. Luo X, Chung DDL, Composites, 30, 227 (1999) 
  17. Simon RM, "Industrial Research & Development,", June, 104 (1982)
  18. Haufler RE, J. Phys. Chem., 94, 8634 (1990) 
  19. Apollo S, J. Phys. D: Appl. Phys., 32, 991 (1999) 
  20. Minlian L, Tao K, Tianhong L, J. Funct. Mater., 28, 383 (1997)