화학공학소재연구정보센터
Polymer(Korea), Vol.25, No.1, 15-24, January, 2001
글리콜 몰비가 다른 불포화 폴리에스테르 수지의 경화거동 및 점탄성
Curing Behaviors and Viscoelastic of UPE Resins with Different Glycol Molar Ratios
E-mail:
초록
본 연구에서는 불포화 폴리에스테르 수지의 글리콜 몰비에 따른 경화거동을 실험하였다. 경화과정은 Tanaka 강체진자(rigid-body pendulum)형 점탄성 모델과 differential scanning calorimetry(DSC)법을 이용하였다. 강체진자의 회전축부에 수지막을 형성하여 자유진동을 시키면 수지막의 점탄성 변화에 응답하여 pendulum의 진동주기 T 및 대수 감쇄율 Δ가 변화한다. Pemdulum의 회전축부에 있어서의 수지막의 역학적인 응답을 pendulum의 진동 운동으로 취급하고 TΔ를 이용, 수지막의 dynamic modulus(E'') 및 modulus loss(E")을 구하는 계산식을 만들었다. 이 측정법과 계산식을 이용하여 불포화 폴리에스테르 수지의 경화과정에 있어서의 점탄성 변화를 추적하여 수지막의 경화성의 차이를 알 수 있었다. Neopentyl glycol(NPG)의 몰비가 증가할수록 진동주기의 감소폭 기울기에 의한 경화반응속도가 느리고, damping 값에 의한 점도값의 상승속도가 감소하는 경화거동을 고찰하였다.
In this study, the effects of different glycol molar ratios of unsaturated polyester(UPE) resins on the curing behaviors were investigated. The cross linking process was checked or monitored by differential scanning calorimetry(DSC) and by viscoelastic properties of rigid-body pendulum model. The knife-edge from which the pendulum is suspended, is immersed in a reaction mixture, and the change of the viscoelastic behavior brings on those of the period(T) and logarithmic decrement(Δ) of the damped free oscillations of the pendulum. The values of T and Δ obtained are related to the dynamic modulus(E'') and modulus loss(E"). The information on the viscoelastic behavior of unsaturated polyester(UPE) resins during the curing process are shown to illustrate the usefulness of the techniques. As the content of NPG in a propylene glycol(PG)/NPG glycol mixture increased, both the cycle time during cure and the change of damping during cure of UPE resin decreased.
  1. Ghorbel I, Valentin D, Polym. Compos., 14, 324 (1993) 
  2. Morii T, Hamada H, Tanimoto T, Polym. Compos., 15, 408 (1994) 
  3. Selzer R, Friedrich K, J. Mater. Sci., 30(2), 334 (1995) 
  4. Bradley WL, Grant TS, J. Mater. Sci., 30(21), 5537 (1995) 
  5. Moon CK, J. Ocean Eng. Technol., 10(1), 5 (1996)
  6. Moon CK, Kim JH, J. Mater. Sci. Korea, 7(1), 5 (1996)
  7. Mohamed MH, Am. Scientist, 78, 530 (1990)
  8. Sorenson WR, Campbell TW, "Preparative Methods of Polymer Chemistry," p. 445-449, Interscience, New York (1968)
  9. Vaidya UR, Nadkarni VM, Ind. Eng. Chem. Res., 26, 194 (1987) 
  10. Vaidya UR, Nadkarni VM, J. Appl. Polym. Sci., 34, 235 (1987) 
  11. Selley J, "Encyclopedia of Polymer Science and Engineering", vol. 12, p. 256, John Wiky & Sons, Inc., New York, 1988
  12. Vaidya UR, Nadkarni VM, J. Appl. Polym. Sci., 34, 235 (1987) 
  13. Hori K, Mita I, Kambe H, J. Polym. Sci. A: Polym. Chem., 8, 2839 (1970) 
  14. Kamal MR, Sluror S, Ryan M, SPE ANTEL Tech. Papers, 19, 187 (1973)
  15. Kubota H, J. Appl. Polym. Sci., 19, 2279 (1975) 
  16. Pusatcioglu SY, Fricke AL, Hassler JC, J. Appl. Polym. Sci., 24, 937 (1979) 
  17. Tanaka T, Naito K, Watanabe M, "Measurement of Viscoelastic Properties of Coating Film During the Curing Process", p. 57, Nippon Oil (1984)
  18. Turi EA, "Thermal Characterization of Polymeric Materials", Academic Press, New York (1981)
  19. Han CD, Lee DS, J. Appl. Polym. Sci., 33, 2859 (1987) 
  20. Stevenson JF, Proceeding of the 26th SPC ANTEC, 452 (1982)
  21. Stevenson JF, First International Conference on Reactive Processing of Polymers, Pittsburgh, PA Oct. 28-30 (1980)
  22. Nielson LE, J. Macromol. Sci.-Rev. Macromol. Chem. Phys., 3, 69 (1969)
  23. Stutz H, Illers KH, Mertes J, J. Polym. Sci. B: Polym. Phys., 28, 1483 (1990) 
  24. Ma SC, Yu TL, J. Polym. Eng., 12, 179 (1993)
  25. Ma SC, Lin HL, Yu TL, Polym. J., 25, 897 (1993) 
  26. Sun B, Yu TL, J. Appl. Polym. Sci., 57(1), 7 (1995) 
  27. Han CD, Lee DS, J. Appl. Polym. Sci., 34, 793 (1987) 
  28. Horie K, Mita I, Kambe H, J. Polym. Sci., 8, 2839 (1970)
  29. Burns R, "Polyester Molding Compounds", Plastics Engineering, ed. by Donald E. Hudgin, p. 45-53, Marcel Dekker, N.Y. (1982)