- Previous Article
- Next Article
- Table of Contents
Journal of Physical Chemistry B, Vol.120, No.42, 10871-10884, 2016
Molecular Recognition of tRNA with 1-Naphthyl Acetyl Spermine, Spermine, and Spermidine: A Thermodynamic, Biophysical, and Molecular Docking Investigative Approach
The role of tRNA in protein translational machinery and the influence of polyamines on the interaction of acylated and deacylated tRNA with ribosomes make polyamine-tRNA interaction conspicuous. We studied the interaction of two biogenic polyamines, spermine (SPM) and spermidine (SPD), with tRNA(Phe) and compared the results to those of the analogue 1-naphthyl acetyl spermine (NASPM). The binding affinity of SPM was comparable to that of NASPM; both were higher than that of SPD. The interactions led to significant thermal stabilization of tRNA(Phe) and an increase in the enthalpy of transition. All the interactions were exothermic in nature and displayed prominent enthalpy-entropy compensation behavior. The entropy-driven nature of the interaction, the structural perturbations observed, and docking results proved that the polyamines were bound in the groove of the anticodon arm of tRNA(Phe). The amine groups of polyamines were involved in extensive electrostatic, H-bonding, and van der Waals interactions with tRNA(Phe). The naphthyl group of NASPM showed an additional stacking interaction with G24 and G26 of tRNA(Phe), which was absent in others. The results demonstrate that 1-naphthyl acetyl spermine can target the same binding sites as the biogenic polyamines without substituting for the functions played by them, which may lead to exhibition of selective anticancer cytotoxicity.