화학공학소재연구정보센터
Journal of Power Sources, Vol.329, 462-472, 2016
Thermodynamic analysis and effect of crystallinity for silicon monoxide negative electrode for lithium ion batteries
The electrochemical behavior of SiO negative electrodes for lithium ion batteries is thermodynamically and experimentally investigated. The analysis of the reaction pathway and the calculation of the reaction potentials during the Li insertion/extraction reactions are carried out by the construction of the ternary phase diagram for the Li-Si-O system. In the initial reaction of Li insertion, metallic Si and lithium silicates are formed above 0.37 V vs. Li/Li+ as a conversion reaction of the SiO negative electrode. Further Li insertion produces Li-Si alloys as reversible reaction phases. The decomposition of the Li4SiO4 phase begins before the formation of the Li-Si alloy is completed. The measured electrode behavior of the SiO negative electrode basically agrees with the thermodynamic calculations, especially at a low reaction rate; deviations can be ascribed to kinetic factors and electrode resistance. The values of over 1898 mA h g(-1) and 71.0% were obtained for the discharge capacity and the coulombic efficiency, respectively. Furthermore, the overvoltage for an amorphous SiO electrode was smaller than that for a disproportionated SiO electrode into Si and SiO2 phases. (C) 2016 Elsevier B.V. All rights reserved.