Journal of Power Sources, Vol.332, 366-371, 2016
TiO2 single crystalline nanorod compact layer for high-performance CH3NH3PbI3 perovskite solar cells with an efficiency exceeding 17% ocr
A TiO2 compact layer is crucial to a high-performance perovskite solar cell (PSC). Interestingly, there is a severe paucity of research on using one-dimensional nanostructure to fabricate the compact layer. In this study, anatase TiO2 single-crystalline nanorods (NRs) with a length of 30 +/- 10 nm and a diameter of 4 1 nm are synthesized via a one-pot solvothermal approach. A pinhole-free and thickness-controllable compact layer on PSC is fabricated by spin-coating the TiO2 nanorods on transparent conductive oxide substrate. Thanks to good electronic transport channel and less defects and interfaces, one-dimensional TiO2 NRs, with longer electron lifetime, shorter transport time and higher charge collection efficiency than TiO2 quantum dots (QDs) and TiO2 nanoparticles (NPs), can improve the photovoltaic performance of the PSC based on TiO2-NR compact layer. As a result, the PSC based on TiO2 NRs shows the best photovoltaic performance with a power conversion efficiency of 17.58%, which is enhanced by a factor of 1.16 and 1.30 respectively compared with the PSCs based on TiO2-QDs and TiO2-NPs. (C) 2016 Elsevier B.V. All rights reserved.