Journal of Structural Biology, Vol.196, No.2, 98-106, 2016
Organic matrices in metazoan calcium carbonate skeletons: Composition, functions, evolution
Calcium carbonate skeletal tissues in metazoans comprise a small quantity of occluded organic macromolecules, mostly proteins and polysaccharides that constitute the skeletal matrix. Because its functions in modulating the biomineralization process are well known, the skeletal matrix has been extensively studied, successively via classical biochemical approaches, via molecular biology and, in recent years, via transcriptomics and proteomics. The optimistic view that the deposition of calcium carbonate minerals requires a limited number of macromolecules has been challenged, in the last decade, by high throughput approaches. Such approaches have made possible the rapid identification of large sets of mineral-associated proteins, i.e., 'skeletal repertoires' or 'skeletomes', in several calcifying animal models, ranging from sponges to echinoderms. One of the consequences of this expanding set of data is that a simple definition of the skeletal matrix is no longer possible. This increase in available data, however, makes it easier to compare skeletal repertoires, shedding light on the fundamental evolutionary mechanisms affecting matrix components. (C) 2016 Elsevier Inc. All rights reserved.