Propellants Explosives Pyrotechnics, Vol.41, No.5, 844-849, 2016
Generalized Method for Gun Propellant Formulation Design
Determination of propellant formulation by ballistic requirement is an important area of research in recent times. In this study, a theoretical method for the design of gun propellant formulation using primary data of ingredients and necessary thermochemical properties of the resultant propellant was established. The employed method is based on a mathematical model of thermochemical properties of the propellant by optimizing the heat of explosion of the propellant using the fmincon tool in MATLAB. A graphical user interface (GUI) based code was generated and developed for the formulation design of solid gun propellants. The designed code was verified by available data in the literature. Such code will be useful to the researchers working in the area of high energy materials for the design of unknown propellant compositions. Further, it can be extended to redesign the existing propellant formulation in order to enhance the ballistic performance.
Keywords:Propellant formulation design;Heat of explosion;Force constant;Nonlinear optimization;MATLAB tool