Journal of Industrial and Engineering Chemistry, Vol.45, 11-14, January, 2017
Work function control in carbon nanosheets via chloride-based metal precursors and their applications as transparent electrodes
E-mail:
Work function of carbon nanosheets (CNSs) is easily controlled using various chloride-based metal precursors. The metal ions in the precursors are reduced despite the simple spin coating without posttreatment due to electron transfer from the CNSs to the ions. The work function of CNSs doped with AuCl3, ZnCl2, and CoCl2 presented values of 4.91, 4.77, and 4.69 eV, respectively, which are significantly higher than pristine CNSs (4.60 eV). The reduced metal nanoparticles locally induced electronic modification of the CNSs located in the vicinity, leading to transparent conducting electrodes with high work functions and subsequently a high power conversion efficiency of ~2.01% for an ITO-free OPV incorporating a AuCl3-doped CNS electrode.
- Krebs FC, Sol. Energy Mater. Sol. Cells, 93(4), 394 (2009)
- Hecht DS, Hu LB, Irvin G, Adv. Mater., 23(13), 1482 (2011)
- Huang X, Zeng ZY, Fan ZX, Liu JQ, Zhang H, Adv. Mater., 24(45), 5979 (2012)
- Kim KK, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH, Nature, 5, 706 (2009)
- Byun SJ, Lim H, Shin GY, Han TH, Oh SH, Ahn JH, Choi HC, Lee TW, J. Phys. Chem. Lett., 2, 493 (2011)
- Wan XJ, Long GK, Huang L, Chen YS, Adv. Mater., 23(45), 5342 (2011)
- Mittal G, Dhand V, Rhee KY, Park SJ, Lee WR, J. Ind. Eng. Chem., 21, 11 (2015)
- Kim SH, Noh YJ, Kwon SN, Kim BN, Lee BC, Yang SY, Jung CH, Na SI, Ind. Eng. Chem. Fundam., 55, 299 (2013)
- Joh HI, Lee S, Kim TW, Hwang SY, Hahn JR, Carbon, 55, 299 (2013)
- Na SI, Noh YJ, Son SY, Kim TW, Kim SS, Lee S, Joh HI, Appl. Phys. Lett., 102, 043304 (2013)
- Son SY, Yun JM, Noh YJ, Lee S, Jo HN, Na SI, Joh HI, Carbon, 81, 546 (2015)
- Lee JS, Joh HI, Kim TW, Lee S, Org. Electron., 15, 132 (2014)
- Yeo JS, Yun JM, Jung YS, Kim DY, Noh YJ, Kim SS, Na SI, J. Mater. Chem. A, 2, 292 (2014)
- Jiao F, Zhang F, Zang Y, Zou Y, Di C, Xu W, Zhu D, Chem. Commun., 50, 2374 (2014)
- Kwon KC, Choi KS, Kim SY, Adv. Funct. Mater., 22(22), 4724 (2012)
- Kim SM, Kim KK, Jo YW, Park MH, Chae SJ, Duong DL, et al., ACS Nano, 5, 1236 (2011)
- Wang Y, Tong SW, Xu XF, Ozyilmaz B, Loh KP, Adv. Mater., 23(13), 1514 (2011)
- Chang JK, Lin WH, Taur JI, Chen TH, Liao GK, Pi TW, Chen MH, Wu CI, ACS Appl. Mater. Interfaces, 7, 17155 (2015)
- Huang JH, Fang JH, Liu CC, Chu CW, ACS Nano, 8, 6262 (2011)
- Choi YY, Kang SJ, Kim HK, Choi WM, Na SI, Sol. Energy Mater. Sol. Cells, 96(1), 281 (2012)
- Park H, Brown PR, Bulovic V, Kong J, Nano Lett., 12, 133 (2012)
- Wu J, Becerril HA, Bao Z, Liu Z, Chen Y, Peumans P, Appl. Phys. Lett., 92, 263302 (2008)
- Yun JM, Jung CH, Noh YJ, Jeon YJ, Kim SS, Kim DY, Na SI, J. Ind. Eng. Chem., 21, 877 (2015)
- Wang L, Liu W, Zhang Y, Zhang ZH, Tan ST, Yi X, Wang G, Sun X, Zhu H, Demir HV, Nano Energy, 12, 419 (2015)
- Zhu Z, Mankowski T, Balakrishnan K, Shikoh AS, Touati F, Benammar MA, Mansuripur M, Falco CM, Appl. Phys. Lett., 119, 085303 (2016)