화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.55, No.1, 54-59, February, 2017
유틸리티 절감을 위한 미반응 스티렌 모노머 회수공정의 설계
Process Design for Recovery of Unreacted Styrene Monomer for Utility Saving
E-mail:
초록
ABS 중합공정 중 잔류 모노머 회수 공정의 유틸리티 사용량 절감을 위한 공정의 개선을 수행하였다. ABS 폴리머 생산 과정 중 잔류 모노머 회수 공정은 제품의 품질 향상을 위해 반드시 필요하다. 잔류 모노머의 회수를 위한 다양한 방식이 있으나, 본 연구에서 대상으로 한 것은 스팀 스트리핑 공정이다. 기존의 스팀 스트리핑은 많은 양의 스팀과 냉각수가 사용되고 있으나, 본 연구를 통해 유틸리티 사용을 절감하는 새로운 방안을 찾고자 하였다. 스트리핑 후 모노머와 함께 배출되는 스팀의 잠열을 진공상태의 수증기로 회수하고, 압축으로 온도를 상승시켜 스트리핑 스팀으로 재사용하도록 함으로써 스팀의 사용을 획기적으로 절감하였다. 또한 모노머 최종 회수 과정에서 발생되는 물을 모노머 응축에 냉각수로 활용함으로써 용수에 대한 사용량도 감소 시킬 수 있었다.
A study for process design to curtail the utility consumption during residual styrene monomer recovery in an ABS polymerization process was carried out. Among different techniques for residual monomer recovery, the steam stripping is dominantly employed in industries. The existing process, however, consumes a large amount of utility (steam and cooling water), and this study focused on the design of a new process that can substantially spare the utility consumption. A new process was configured to utilize the latent heat of the stripping steam, which is condensed with the monomer using cooling water after exiting the stripper. The condenser was modified to use vacuum state water as coolant and to generate vacuum state steam using the latent heat of the stripping steam. The steam is injected to the stripper as the stripping steam after upgrading using a compressor. Through this modification, consumption of steam and also cooling water could be significantly reduced at some expense of electricity for compressor operation.
  1. Brown, Wayne, et al., “Introducing Slurry Into Steam Stripping Vessel Chamber to Vaporize Dilute and Some Water, Introducing Steam to Vaporize Water, Removing Vapor and Slurry,” U.S. Patent No.6,358,404(1992).
  2. Xu SL, Espinosa J, Salomone HE, Iribarren OA, Chin. J. Chem. Eng., 9(2), 141 (2001)
  3. Hwang YL, Keller GE II, Olsson JD, Ind. Eng. Chem. Res., 31(7), 1753 (1992)
  4. Hwang YL, Keller GE II, Olsson JD, Ind. Eng. Chem. Res., 31(7), 1759 (1992)
  5. Vane LM, Alvarez FR, J. Chem. Technol. Biotechnol., 83(9), 1275 (2008)
  6. Jacobs Marc L, Gottschlich DE, Baker RW, Petroleum Technology Quarterly, 132 (1999)
  7. Bernardo P, Drioli E, Pet. Chem., 50(4), 271 (2010)